Upload 10 files
Browse files- generation_config.json +2 -43
- handler.py +86 -445
- requirements.txt +1 -5
generation_config.json
CHANGED
|
@@ -1,49 +1,8 @@
|
|
| 1 |
{
|
| 2 |
-
"_from_model_config": true,
|
| 3 |
"attn_implementation": "flash_attention_2",
|
| 4 |
"bos_token_id": 1,
|
| 5 |
"eos_token_id": 2,
|
| 6 |
-
"pad_token_id": 0,
|
| 7 |
"max_length": 4096,
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"min_new_tokens": 1,
|
| 11 |
-
"early_stopping": false,
|
| 12 |
-
"max_time": null,
|
| 13 |
-
"do_sample": true,
|
| 14 |
-
"num_beams": 1,
|
| 15 |
-
"num_beam_groups": 1,
|
| 16 |
-
"penalty_alpha": null,
|
| 17 |
-
"use_cache": true,
|
| 18 |
-
"temperature": 0.2,
|
| 19 |
-
"top_k": 50,
|
| 20 |
-
"top_p": 0.9,
|
| 21 |
-
"typical_p": 1.0,
|
| 22 |
-
"epsilon_cutoff": 0.0,
|
| 23 |
-
"eta_cutoff": 0.0,
|
| 24 |
-
"diversity_penalty": 0.0,
|
| 25 |
-
"repetition_penalty": 1.05,
|
| 26 |
-
"encoder_repetition_penalty": 1.0,
|
| 27 |
-
"length_penalty": 1.0,
|
| 28 |
-
"no_repeat_ngram_size": 0,
|
| 29 |
-
"bad_words_ids": null,
|
| 30 |
-
"force_words_ids": null,
|
| 31 |
-
"renormalize_logits": false,
|
| 32 |
-
"constraints": null,
|
| 33 |
-
"forced_bos_token_id": null,
|
| 34 |
-
"forced_eos_token_id": null,
|
| 35 |
-
"remove_invalid_values": false,
|
| 36 |
-
"exponential_decay_length_penalty": null,
|
| 37 |
-
"suppress_tokens": null,
|
| 38 |
-
"begin_suppress_tokens": null,
|
| 39 |
-
"forced_decoder_ids": null,
|
| 40 |
-
"sequence_bias": null,
|
| 41 |
-
"guidance_scale": null,
|
| 42 |
-
"low_memory": null,
|
| 43 |
-
"num_return_sequences": 1,
|
| 44 |
-
"output_attentions": false,
|
| 45 |
-
"output_hidden_states": false,
|
| 46 |
-
"output_scores": false,
|
| 47 |
-
"return_dict_in_generate": false,
|
| 48 |
-
"transformers_version": "4.40.0"
|
| 49 |
}
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"attn_implementation": "flash_attention_2",
|
| 3 |
"bos_token_id": 1,
|
| 4 |
"eos_token_id": 2,
|
|
|
|
| 5 |
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"transformers_version": "4.37.2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
}
|
handler.py
CHANGED
|
@@ -1,450 +1,146 @@
|
|
| 1 |
-
"""
|
| 2 |
-
PULSE-7B Enhanced Handler
|
| 3 |
-
Ubden® Team - Edited by https://github.com/ck-cankurt
|
| 4 |
-
Support: Text, Image URLs, and Base64 encoded images
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
import torch
|
| 8 |
from typing import Dict, List, Any
|
| 9 |
-
import base64
|
| 10 |
-
from io import BytesIO
|
| 11 |
-
from PIL import Image
|
| 12 |
-
import requests
|
| 13 |
-
import time
|
| 14 |
-
|
| 15 |
-
# Import utilities if available
|
| 16 |
-
try:
|
| 17 |
-
from utils import (
|
| 18 |
-
performance_monitor,
|
| 19 |
-
validate_image_input,
|
| 20 |
-
sanitize_parameters,
|
| 21 |
-
get_system_info,
|
| 22 |
-
create_health_check,
|
| 23 |
-
deepseek_client
|
| 24 |
-
)
|
| 25 |
-
UTILS_AVAILABLE = True
|
| 26 |
-
except ImportError:
|
| 27 |
-
UTILS_AVAILABLE = False
|
| 28 |
-
deepseek_client = None
|
| 29 |
-
print("⚠️ Utils module not found - performance monitoring and DeepSeek integration disabled")
|
| 30 |
-
|
| 31 |
-
# Try to import LLaVA modules for proper conversation handling
|
| 32 |
-
try:
|
| 33 |
-
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 34 |
-
from llava.conversation import conv_templates, SeparatorStyle
|
| 35 |
-
from llava.mm_utils import tokenizer_image_token, process_images, KeywordsStoppingCriteria
|
| 36 |
-
LLAVA_AVAILABLE = True
|
| 37 |
-
print("✅ LLaVA modules imported successfully")
|
| 38 |
-
except ImportError:
|
| 39 |
-
LLAVA_AVAILABLE = False
|
| 40 |
-
print("⚠️ LLaVA modules not available - using basic text processing")
|
| 41 |
|
| 42 |
|
| 43 |
class EndpointHandler:
|
| 44 |
def __init__(self, path=""):
|
| 45 |
"""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
Args:
|
| 50 |
-
path:
|
| 51 |
"""
|
| 52 |
-
print("
|
| 53 |
-
print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
|
| 54 |
-
import sys
|
| 55 |
-
print(f"🔧 Python version: {sys.version}")
|
| 56 |
-
print(f"🔧 PyTorch version: {torch.__version__}")
|
| 57 |
-
|
| 58 |
-
# Check transformers version
|
| 59 |
-
try:
|
| 60 |
-
import transformers
|
| 61 |
-
print(f"🔧 Transformers version: {transformers.__version__}")
|
| 62 |
-
|
| 63 |
-
# PULSE LLaVA works with transformers==4.37.2
|
| 64 |
-
if transformers.__version__ == "4.37.2":
|
| 65 |
-
print("✅ Using PULSE LLaVA compatible version (4.37.2)")
|
| 66 |
-
elif "dev" in transformers.__version__ or "git" in str(transformers.__version__):
|
| 67 |
-
print("⚠️ Using development version - may conflict with PULSE LLaVA")
|
| 68 |
-
else:
|
| 69 |
-
print("⚠️ Using different version - PULSE LLaVA prefers 4.37.2")
|
| 70 |
-
except Exception as e:
|
| 71 |
-
print(f"❌ Error checking transformers version: {e}")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
if torch.cuda.is_available():
|
| 75 |
-
print(f"🔧 CUDA device: {torch.cuda.get_device_name(0)}")
|
| 76 |
-
|
| 77 |
-
# Let's see what hardware we're working with
|
| 78 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 79 |
-
print(f"
|
| 80 |
|
| 81 |
try:
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# Move model to device like demo
|
| 100 |
-
self.model = self.model.to(self.device)
|
| 101 |
-
self.use_pipeline = False
|
| 102 |
-
print("✅ Model loaded successfully with PULSE demo's approach!")
|
| 103 |
-
print(f"📸 Image processor: {type(self.image_processor).__name__}")
|
| 104 |
-
|
| 105 |
-
else:
|
| 106 |
-
raise ImportError("LLaVA modules not available")
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
-
print(f"
|
| 110 |
-
print("
|
| 111 |
|
| 112 |
try:
|
| 113 |
-
#
|
| 114 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
"low_cpu_mem_usage": True,
|
| 125 |
-
"use_safetensors": True
|
| 126 |
-
}
|
| 127 |
)
|
| 128 |
-
self.use_pipeline = True
|
| 129 |
-
self.image_processor = None
|
| 130 |
-
print("✅ Model loaded successfully via pipeline!")
|
| 131 |
-
|
| 132 |
-
except Exception as e2:
|
| 133 |
-
print(f"😓 Pipeline also failed: {e2}")
|
| 134 |
-
|
| 135 |
-
try:
|
| 136 |
-
# Last resort - manual loading
|
| 137 |
-
from transformers import AutoTokenizer, LlamaForCausalLM
|
| 138 |
-
|
| 139 |
-
print("📖 Manual loading as last resort...")
|
| 140 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 141 |
-
"PULSE-ECG/PULSE-7B",
|
| 142 |
-
trust_remote_code=True
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
-
self.model = LlamaForCausalLM.from_pretrained(
|
| 146 |
-
"PULSE-ECG/PULSE-7B",
|
| 147 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 148 |
-
device_map="auto",
|
| 149 |
-
low_cpu_mem_usage=True,
|
| 150 |
-
trust_remote_code=True
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
if self.tokenizer.pad_token is None:
|
| 154 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 155 |
-
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 156 |
-
|
| 157 |
-
self.model.eval()
|
| 158 |
-
self.use_pipeline = False
|
| 159 |
-
self.image_processor = None
|
| 160 |
-
print("✅ Model loaded manually!")
|
| 161 |
-
|
| 162 |
-
except Exception as e3:
|
| 163 |
-
print(f"😓 All approaches failed: {e3}")
|
| 164 |
-
self.pipe = None
|
| 165 |
-
self.model = None
|
| 166 |
-
self.tokenizer = None
|
| 167 |
-
self.image_processor = None
|
| 168 |
-
self.use_pipeline = None
|
| 169 |
-
|
| 170 |
-
# Final status report
|
| 171 |
-
print("\n🔍 Model Loading Status Report:")
|
| 172 |
-
print(f" - use_pipeline: {self.use_pipeline}")
|
| 173 |
-
print(f" - model: {'✅ Loaded' if hasattr(self, 'model') and self.model is not None else '❌ None'}")
|
| 174 |
-
print(f" - tokenizer: {'✅ Loaded' if hasattr(self, 'tokenizer') and self.tokenizer is not None else '❌ None'}")
|
| 175 |
-
print(f" - image_processor: {'✅ Loaded' if hasattr(self, 'image_processor') and self.image_processor is not None else '❌ None'}")
|
| 176 |
-
print(f" - pipe: {'✅ Loaded' if hasattr(self, 'pipe') and self.pipe is not None else '❌ None'}")
|
| 177 |
-
|
| 178 |
-
# Check if any model component loaded successfully
|
| 179 |
-
has_model = hasattr(self, 'model') and self.model is not None
|
| 180 |
-
has_tokenizer = hasattr(self, 'tokenizer') and self.tokenizer is not None
|
| 181 |
-
has_pipe = hasattr(self, 'pipe') and self.pipe is not None
|
| 182 |
-
has_image_processor = hasattr(self, 'image_processor') and self.image_processor is not None
|
| 183 |
-
|
| 184 |
-
if not (has_model or has_tokenizer or has_pipe):
|
| 185 |
-
print("💥 CRITICAL: No model components loaded successfully!")
|
| 186 |
-
else:
|
| 187 |
-
print("✅ At least one model component loaded successfully")
|
| 188 |
-
if has_image_processor:
|
| 189 |
-
print("🖼️ Vision capabilities available!")
|
| 190 |
-
else:
|
| 191 |
-
print("⚠️ No image processor - text-only mode")
|
| 192 |
-
|
| 193 |
-
def is_valid_image_format(self, filename_or_url):
|
| 194 |
-
"""Validate image format like PULSE demo"""
|
| 195 |
-
# Demo's supported formats
|
| 196 |
-
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
|
| 197 |
-
|
| 198 |
-
if filename_or_url.startswith(('http://', 'https://')):
|
| 199 |
-
# For URLs, check the extension or content-type
|
| 200 |
-
ext = filename_or_url.split('.')[-1].split('?')[0].lower()
|
| 201 |
-
return ext in image_extensions
|
| 202 |
-
else:
|
| 203 |
-
# For base64 or local files
|
| 204 |
-
return True # Base64 will be validated during decode
|
| 205 |
-
|
| 206 |
-
def process_image_input(self, image_input):
|
| 207 |
-
"""
|
| 208 |
-
Handle both URL and base64 image inputs exactly like PULSE demo
|
| 209 |
-
|
| 210 |
-
Args:
|
| 211 |
-
image_input: Can be a URL string or base64 encoded image
|
| 212 |
-
|
| 213 |
-
Returns:
|
| 214 |
-
PIL Image object or None if something goes wrong
|
| 215 |
-
"""
|
| 216 |
-
try:
|
| 217 |
-
# Check if it's a URL (starts with http/https)
|
| 218 |
-
if isinstance(image_input, str) and (image_input.startswith('http://') or image_input.startswith('https://')):
|
| 219 |
-
print(f"🌐 Fetching image from URL: {image_input[:50]}...")
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
if
|
| 223 |
-
|
| 224 |
-
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 230 |
-
print(f"✅ Image downloaded successfully! Size: {image.size}")
|
| 231 |
-
return image
|
| 232 |
-
else:
|
| 233 |
-
print(f"❌ Failed to load image: status {response.status_code}")
|
| 234 |
-
return None
|
| 235 |
-
|
| 236 |
-
# Must be base64 then
|
| 237 |
-
elif isinstance(image_input, str):
|
| 238 |
-
print("🔍 Decoding base64 image...")
|
| 239 |
-
|
| 240 |
-
# Remove the data URL prefix if it exists
|
| 241 |
-
base64_data = image_input
|
| 242 |
-
if "base64," in image_input:
|
| 243 |
-
base64_data = image_input.split("base64,")[1]
|
| 244 |
-
|
| 245 |
-
# Clean and validate base64 data
|
| 246 |
-
base64_data = base64_data.strip().replace('\n', '').replace('\r', '').replace(' ', '')
|
| 247 |
-
|
| 248 |
-
try:
|
| 249 |
-
image_data = base64.b64decode(base64_data)
|
| 250 |
-
image = Image.open(BytesIO(image_data)).convert('RGB')
|
| 251 |
-
print(f"✅ Base64 image decoded successfully! Size: {image.size}")
|
| 252 |
-
return image
|
| 253 |
-
except Exception as decode_error:
|
| 254 |
-
print(f"❌ Base64 decode error: {decode_error}")
|
| 255 |
-
return None
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
"""Add Turkish commentary to the response using DeepSeek API"""
|
| 265 |
-
if not enable_commentary:
|
| 266 |
-
return response
|
| 267 |
-
|
| 268 |
-
if not UTILS_AVAILABLE or not deepseek_client:
|
| 269 |
-
print("⚠️ DeepSeek client not available - skipping Turkish commentary")
|
| 270 |
-
response["commentary_status"] = "unavailable"
|
| 271 |
-
return response
|
| 272 |
-
|
| 273 |
-
if not deepseek_client.is_available():
|
| 274 |
-
print("⚠️ DeepSeek API key not configured - skipping Turkish commentary")
|
| 275 |
-
response["commentary_status"] = "api_key_missing"
|
| 276 |
-
return response
|
| 277 |
-
|
| 278 |
-
generated_text = response.get("generated_text", "")
|
| 279 |
-
if not generated_text:
|
| 280 |
-
print("⚠️ No generated text to comment on")
|
| 281 |
-
response["commentary_status"] = "no_text"
|
| 282 |
-
return response
|
| 283 |
-
|
| 284 |
-
print("🔄 DeepSeek ile Türkçe yorum ekleniyor...")
|
| 285 |
-
commentary_result = deepseek_client.get_turkish_commentary(generated_text, timeout)
|
| 286 |
-
|
| 287 |
-
if commentary_result["success"]:
|
| 288 |
-
response["comment_text"] = commentary_result["comment_text"]
|
| 289 |
-
response["commentary_model"] = commentary_result.get("model", "deepseek-chat")
|
| 290 |
-
response["commentary_tokens"] = commentary_result.get("tokens_used", 0)
|
| 291 |
-
response["commentary_status"] = "success"
|
| 292 |
-
print("✅ Türkçe yorum başarıyla eklendi")
|
| 293 |
-
else:
|
| 294 |
-
response["comment_text"] = ""
|
| 295 |
-
response["commentary_error"] = commentary_result["error"]
|
| 296 |
-
response["commentary_status"] = "failed"
|
| 297 |
-
print(f"❌ Türkçe yorum eklenemedi: {commentary_result['error']}")
|
| 298 |
-
|
| 299 |
-
return response
|
| 300 |
-
|
| 301 |
-
def health_check(self) -> Dict[str, Any]:
|
| 302 |
-
"""Health check endpoint"""
|
| 303 |
-
if UTILS_AVAILABLE:
|
| 304 |
-
return create_health_check()
|
| 305 |
else:
|
| 306 |
-
|
| 307 |
-
'status': 'healthy',
|
| 308 |
-
'model': 'PULSE-7B',
|
| 309 |
-
'timestamp': time.time(),
|
| 310 |
-
'handler_version': '2.0.0'
|
| 311 |
-
}
|
| 312 |
|
| 313 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 314 |
"""
|
| 315 |
-
|
| 316 |
|
| 317 |
Args:
|
| 318 |
-
data: Input data
|
| 319 |
|
| 320 |
Returns:
|
| 321 |
-
List
|
| 322 |
"""
|
| 323 |
-
#
|
| 324 |
if self.use_pipeline is None:
|
| 325 |
return [{
|
| 326 |
-
"generated_text": "
|
| 327 |
-
"error": "Model initialization failed"
|
| 328 |
-
"handler": "Ubden® Team Enhanced Handler"
|
| 329 |
}]
|
| 330 |
|
| 331 |
try:
|
| 332 |
-
#
|
| 333 |
inputs = data.get("inputs", "")
|
| 334 |
-
text = ""
|
| 335 |
-
image = None
|
| 336 |
-
|
| 337 |
if isinstance(inputs, dict):
|
| 338 |
-
|
| 339 |
-
# Support query field (new) plus original text/prompt fields
|
| 340 |
-
text = inputs.get("query", inputs.get("text", inputs.get("prompt", str(inputs))))
|
| 341 |
-
|
| 342 |
-
# Check for image in various formats
|
| 343 |
-
image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
|
| 344 |
-
if image_input:
|
| 345 |
-
image = self.process_image_input(image_input)
|
| 346 |
-
if image:
|
| 347 |
-
# Since we're in text-only mode, create smart ECG context
|
| 348 |
-
print(f"🖼️ Image loaded: {image.size[0]}x{image.size[1]} pixels - using text-only ECG analysis mode")
|
| 349 |
-
|
| 350 |
-
# Create ECG-specific prompt that mimics visual analysis
|
| 351 |
-
ecg_context = f"Analyzing an ECG image ({image.size[0]}x{image.size[1]} pixels). "
|
| 352 |
-
|
| 353 |
-
# Use demo's exact approach - no additional context, just the query
|
| 354 |
-
# Model is trained to understand ECG images from text queries
|
| 355 |
-
pass # Keep text exactly as received
|
| 356 |
else:
|
| 357 |
-
# Simple string input
|
| 358 |
text = str(inputs)
|
| 359 |
|
| 360 |
if not text:
|
| 361 |
-
return [{"generated_text": "
|
| 362 |
|
| 363 |
-
#
|
| 364 |
parameters = data.get("parameters", {})
|
| 365 |
-
max_new_tokens = min(parameters.get("max_new_tokens",
|
| 366 |
-
temperature = parameters.get("temperature", 0.
|
| 367 |
-
top_p = parameters.get("top_p",
|
| 368 |
-
do_sample = parameters.get("do_sample", True)
|
| 369 |
-
repetition_penalty = parameters.get("repetition_penalty", 1.0)
|
| 370 |
-
|
| 371 |
-
print(f"🎛️ Generation params: max_tokens={max_new_tokens}, temp={temperature}, top_p={top_p}, do_sample={do_sample}, rep_penalty={repetition_penalty}")
|
| 372 |
-
|
| 373 |
-
# Check if Turkish commentary is requested (NEW FEATURE)
|
| 374 |
-
enable_turkish_commentary = parameters.get("enable_turkish_commentary", False) # Default false
|
| 375 |
|
| 376 |
-
#
|
| 377 |
if self.use_pipeline:
|
| 378 |
-
print(f"🎛️ Pipeline generation: temp={temperature}, tokens={max_new_tokens}")
|
| 379 |
-
print(f"📝 Input text: '{text[:100]}...'")
|
| 380 |
-
|
| 381 |
result = self.pipe(
|
| 382 |
text,
|
| 383 |
max_new_tokens=max_new_tokens,
|
| 384 |
-
min_new_tokens=200, # Force very detailed analysis to match demo
|
| 385 |
temperature=temperature,
|
| 386 |
top_p=top_p,
|
| 387 |
do_sample=do_sample,
|
| 388 |
repetition_penalty=repetition_penalty,
|
| 389 |
-
return_full_text=False #
|
| 390 |
)
|
| 391 |
|
| 392 |
-
# Pipeline
|
| 393 |
if isinstance(result, list) and len(result) > 0:
|
| 394 |
-
generated_text
|
| 395 |
-
|
| 396 |
-
print(f"🔍 Pipeline debug:")
|
| 397 |
-
print(f" - Raw result: '{str(result[0])[:200]}...'")
|
| 398 |
-
print(f" - Generated text length: {len(generated_text)}")
|
| 399 |
-
|
| 400 |
-
# Clean up common issues
|
| 401 |
-
if generated_text.startswith(text):
|
| 402 |
-
generated_text = generated_text[len(text):].strip()
|
| 403 |
-
print("🔧 Removed input text from output")
|
| 404 |
-
|
| 405 |
-
# Remove common artifacts
|
| 406 |
-
generated_text = generated_text.replace("</s>", "").strip()
|
| 407 |
-
|
| 408 |
-
if not generated_text:
|
| 409 |
-
print("❌ Pipeline generated empty text!")
|
| 410 |
-
generated_text = "Empty response from pipeline. Please try different parameters."
|
| 411 |
-
|
| 412 |
-
print(f"✅ Final pipeline text: '{generated_text[:100]}...' (length: {len(generated_text)})")
|
| 413 |
-
|
| 414 |
-
# Create response
|
| 415 |
-
response = {"generated_text": generated_text}
|
| 416 |
-
|
| 417 |
-
# Add Turkish commentary if requested (NEW FEATURE)
|
| 418 |
-
if enable_turkish_commentary:
|
| 419 |
-
response = self.add_turkish_commentary(response, True)
|
| 420 |
-
|
| 421 |
-
return [response]
|
| 422 |
else:
|
| 423 |
-
generated_text
|
| 424 |
-
|
| 425 |
-
# Create response
|
| 426 |
-
response = {"generated_text": generated_text}
|
| 427 |
-
|
| 428 |
-
# Add Turkish commentary if requested (NEW FEATURE)
|
| 429 |
-
if enable_turkish_commentary:
|
| 430 |
-
response = self.add_turkish_commentary(response, True)
|
| 431 |
-
|
| 432 |
-
return [response]
|
| 433 |
|
| 434 |
-
#
|
| 435 |
else:
|
| 436 |
-
|
| 437 |
-
print(f"📝 Input text: '{text[:100]}...'")
|
| 438 |
-
|
| 439 |
-
# Text-only generation with enhanced ECG context
|
| 440 |
-
print("🔤 Using enhanced text-only generation with ECG context")
|
| 441 |
-
|
| 442 |
-
# Tokenize the enhanced prompt
|
| 443 |
encoded = self.tokenizer(
|
| 444 |
text,
|
| 445 |
return_tensors="pt",
|
| 446 |
truncation=True,
|
| 447 |
-
max_length=
|
| 448 |
)
|
| 449 |
|
| 450 |
input_ids = encoded["input_ids"].to(self.device)
|
|
@@ -452,89 +148,34 @@ class EndpointHandler:
|
|
| 452 |
if attention_mask is not None:
|
| 453 |
attention_mask = attention_mask.to(self.device)
|
| 454 |
|
| 455 |
-
|
| 456 |
-
print(f" - Enhanced prompt length: {len(text)} chars")
|
| 457 |
-
print(f" - Input tokens: {input_ids.shape[-1]}")
|
| 458 |
-
print(f" - Prompt preview: '{text[:150]}...'")
|
| 459 |
-
|
| 460 |
-
# Generate with enhanced settings for medical analysis
|
| 461 |
with torch.no_grad():
|
| 462 |
outputs = self.model.generate(
|
| 463 |
input_ids,
|
| 464 |
attention_mask=attention_mask,
|
| 465 |
max_new_tokens=max_new_tokens,
|
| 466 |
-
min_new_tokens=200, # Force detailed response like demo
|
| 467 |
temperature=temperature,
|
| 468 |
top_p=top_p,
|
| 469 |
do_sample=do_sample,
|
| 470 |
repetition_penalty=repetition_penalty,
|
| 471 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 472 |
-
eos_token_id=self.tokenizer.eos_token_id
|
| 473 |
-
early_stopping=False
|
| 474 |
)
|
| 475 |
|
| 476 |
-
# Decode
|
| 477 |
generated_ids = outputs[0][input_ids.shape[-1]:]
|
| 478 |
generated_text = self.tokenizer.decode(
|
| 479 |
generated_ids,
|
| 480 |
skip_special_tokens=True,
|
| 481 |
clean_up_tokenization_spaces=True
|
| 482 |
-
)
|
| 483 |
-
|
| 484 |
-
# Aggressive cleanup of artifacts
|
| 485 |
-
generated_text = generated_text.replace("</s>", "").strip()
|
| 486 |
-
|
| 487 |
-
# Simple cleanup - just remove Answer prefix and parentheses
|
| 488 |
-
if generated_text.startswith("(Answer:") and ")" in generated_text:
|
| 489 |
-
# Just remove the parentheses and Answer: prefix
|
| 490 |
-
end_paren = generated_text.find(")")
|
| 491 |
-
answer_content = generated_text[8:end_paren].strip() # Remove "(Answer:"
|
| 492 |
-
# Keep the rest of the response if there is any
|
| 493 |
-
rest_of_response = generated_text[end_paren+1:].strip()
|
| 494 |
-
|
| 495 |
-
if rest_of_response:
|
| 496 |
-
generated_text = f"{answer_content}. {rest_of_response}"
|
| 497 |
-
else:
|
| 498 |
-
generated_text = answer_content
|
| 499 |
-
|
| 500 |
-
elif generated_text.startswith("Answer:"):
|
| 501 |
-
generated_text = generated_text[7:].strip()
|
| 502 |
-
|
| 503 |
-
# Remove only clear training artifacts
|
| 504 |
-
cleanup_patterns = [
|
| 505 |
-
"In this task",
|
| 506 |
-
"I'm asking the respondent",
|
| 507 |
-
"The respondent should"
|
| 508 |
-
]
|
| 509 |
-
|
| 510 |
-
for pattern in cleanup_patterns:
|
| 511 |
-
if pattern in generated_text:
|
| 512 |
-
parts = generated_text.split(pattern)
|
| 513 |
-
generated_text = parts[0].strip()
|
| 514 |
-
break
|
| 515 |
-
|
| 516 |
-
# Only provide fallback if response is truly empty or malformed
|
| 517 |
-
if len(generated_text) < 10 or generated_text.startswith("7)"):
|
| 518 |
-
print("⚠️ Malformed response detected, providing fallback...")
|
| 519 |
-
generated_text = "This ECG shows cardiac electrical activity. For accurate interpretation, please consult with a qualified cardiologist who can analyze the specific waveforms, intervals, and morphology patterns."
|
| 520 |
-
|
| 521 |
-
print(f"✅ Enhanced text-only generation: '{generated_text[:100]}...' (length: {len(generated_text)})")
|
| 522 |
-
|
| 523 |
-
# Create response
|
| 524 |
-
response = {"generated_text": generated_text}
|
| 525 |
-
|
| 526 |
-
# Add Turkish commentary if requested (NEW FEATURE)
|
| 527 |
-
if enable_turkish_commentary:
|
| 528 |
-
response = self.add_turkish_commentary(response, True)
|
| 529 |
|
| 530 |
-
return [
|
| 531 |
-
|
| 532 |
|
| 533 |
except Exception as e:
|
| 534 |
-
error_msg = f"
|
| 535 |
-
print(
|
| 536 |
return [{
|
| 537 |
"generated_text": "",
|
| 538 |
-
"error": error_msg
|
| 539 |
-
"handler": "Ubden® Team Enhanced Handler"
|
| 540 |
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from typing import Dict, List, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class EndpointHandler:
|
| 6 |
def __init__(self, path=""):
|
| 7 |
"""
|
| 8 |
+
Initialize the handler for PULSE-7B model.
|
| 9 |
+
Direct reference to the original model.
|
| 10 |
|
| 11 |
Args:
|
| 12 |
+
path: Path to the model directory (not used, we load from HF hub)
|
| 13 |
"""
|
| 14 |
+
print("Initializing PULSE-7B handler...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Device ayarla
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
print(f"Using device: {self.device}")
|
| 19 |
|
| 20 |
try:
|
| 21 |
+
# Pipeline kullan - en basit ve güvenilir yöntem
|
| 22 |
+
from transformers import pipeline
|
| 23 |
+
|
| 24 |
+
print("Loading model from HuggingFace Hub...")
|
| 25 |
+
self.pipe = pipeline(
|
| 26 |
+
"text-generation",
|
| 27 |
+
model="PULSE-ECG/PULSE-7B",
|
| 28 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 29 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 30 |
+
trust_remote_code=True,
|
| 31 |
+
model_kwargs={
|
| 32 |
+
"low_cpu_mem_usage": True,
|
| 33 |
+
"use_safetensors": True
|
| 34 |
+
}
|
| 35 |
+
)
|
| 36 |
+
print("Model loaded successfully via pipeline!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
except Exception as e:
|
| 39 |
+
print(f"Pipeline loading failed: {e}")
|
| 40 |
+
print("Trying alternative loading method...")
|
| 41 |
|
| 42 |
try:
|
| 43 |
+
# Alternatif: Model ve tokenizer'ı ayrı yükle
|
| 44 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
| 45 |
+
|
| 46 |
+
# Tokenizer'ı yükle
|
| 47 |
+
print("Loading tokenizer...")
|
| 48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 49 |
+
"PULSE-ECG/PULSE-7B",
|
| 50 |
+
trust_remote_code=True
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
# Model'i Llama olarak yükle
|
| 54 |
+
print("Loading model as Llama...")
|
| 55 |
+
self.model = LlamaForCausalLM.from_pretrained(
|
| 56 |
+
"PULSE-ECG/PULSE-7B",
|
| 57 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 58 |
+
device_map="auto",
|
| 59 |
+
low_cpu_mem_usage=True,
|
| 60 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# Padding token ayarla
|
| 64 |
+
if self.tokenizer.pad_token is None:
|
| 65 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 66 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 67 |
|
| 68 |
+
self.model.eval()
|
| 69 |
+
self.use_pipeline = False
|
| 70 |
+
print("Model loaded successfully via direct loading!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
except Exception as e2:
|
| 73 |
+
print(f"Alternative loading also failed: {e2}")
|
| 74 |
+
# En son çare: Basit bir fallback mesajı
|
| 75 |
+
self.pipe = None
|
| 76 |
+
self.model = None
|
| 77 |
+
self.tokenizer = None
|
| 78 |
+
self.use_pipeline = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
else:
|
| 80 |
+
self.use_pipeline = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 83 |
"""
|
| 84 |
+
Process the inference request.
|
| 85 |
|
| 86 |
Args:
|
| 87 |
+
data: Input data containing 'inputs' and optional 'parameters'
|
| 88 |
|
| 89 |
Returns:
|
| 90 |
+
List containing the generated response
|
| 91 |
"""
|
| 92 |
+
# Model yüklenemediyse hata döndür
|
| 93 |
if self.use_pipeline is None:
|
| 94 |
return [{
|
| 95 |
+
"generated_text": "Model could not be loaded. Please check the deployment configuration.",
|
| 96 |
+
"error": "Model initialization failed"
|
|
|
|
| 97 |
}]
|
| 98 |
|
| 99 |
try:
|
| 100 |
+
# Input'ları al
|
| 101 |
inputs = data.get("inputs", "")
|
|
|
|
|
|
|
|
|
|
| 102 |
if isinstance(inputs, dict):
|
| 103 |
+
text = inputs.get("text", inputs.get("prompt", str(inputs)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
else:
|
|
|
|
| 105 |
text = str(inputs)
|
| 106 |
|
| 107 |
if not text:
|
| 108 |
+
return [{"generated_text": "Please provide an input text."}]
|
| 109 |
|
| 110 |
+
# Parametreleri al
|
| 111 |
parameters = data.get("parameters", {})
|
| 112 |
+
max_new_tokens = min(parameters.get("max_new_tokens", 256), 1024)
|
| 113 |
+
temperature = parameters.get("temperature", 0.7)
|
| 114 |
+
top_p = parameters.get("top_p", 0.95)
|
| 115 |
+
do_sample = parameters.get("do_sample", True)
|
| 116 |
+
repetition_penalty = parameters.get("repetition_penalty", 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
# Pipeline kullanıyorsak
|
| 119 |
if self.use_pipeline:
|
|
|
|
|
|
|
|
|
|
| 120 |
result = self.pipe(
|
| 121 |
text,
|
| 122 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 123 |
temperature=temperature,
|
| 124 |
top_p=top_p,
|
| 125 |
do_sample=do_sample,
|
| 126 |
repetition_penalty=repetition_penalty,
|
| 127 |
+
return_full_text=False # Sadece yeni üretilen metni döndür
|
| 128 |
)
|
| 129 |
|
| 130 |
+
# Pipeline list döndürür
|
| 131 |
if isinstance(result, list) and len(result) > 0:
|
| 132 |
+
return [{"generated_text": result[0].get("generated_text", "")}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
else:
|
| 134 |
+
return [{"generated_text": str(result)}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# Manuel generation kullanıyorsak
|
| 137 |
else:
|
| 138 |
+
# Tokenize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
encoded = self.tokenizer(
|
| 140 |
text,
|
| 141 |
return_tensors="pt",
|
| 142 |
truncation=True,
|
| 143 |
+
max_length=2048
|
| 144 |
)
|
| 145 |
|
| 146 |
input_ids = encoded["input_ids"].to(self.device)
|
|
|
|
| 148 |
if attention_mask is not None:
|
| 149 |
attention_mask = attention_mask.to(self.device)
|
| 150 |
|
| 151 |
+
# Generate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
with torch.no_grad():
|
| 153 |
outputs = self.model.generate(
|
| 154 |
input_ids,
|
| 155 |
attention_mask=attention_mask,
|
| 156 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 157 |
temperature=temperature,
|
| 158 |
top_p=top_p,
|
| 159 |
do_sample=do_sample,
|
| 160 |
repetition_penalty=repetition_penalty,
|
| 161 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 162 |
+
eos_token_id=self.tokenizer.eos_token_id
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
+
# Decode - sadece yeni tokenleri al
|
| 166 |
generated_ids = outputs[0][input_ids.shape[-1]:]
|
| 167 |
generated_text = self.tokenizer.decode(
|
| 168 |
generated_ids,
|
| 169 |
skip_special_tokens=True,
|
| 170 |
clean_up_tokenization_spaces=True
|
| 171 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
return [{"generated_text": generated_text}]
|
|
|
|
| 174 |
|
| 175 |
except Exception as e:
|
| 176 |
+
error_msg = f"Error during generation: {str(e)}"
|
| 177 |
+
print(error_msg)
|
| 178 |
return [{
|
| 179 |
"generated_text": "",
|
| 180 |
+
"error": error_msg
|
|
|
|
| 181 |
}]
|
requirements.txt
CHANGED
|
@@ -3,8 +3,4 @@ torch>=2.1.0
|
|
| 3 |
accelerate>=0.25.0
|
| 4 |
sentencepiece
|
| 5 |
safetensors
|
| 6 |
-
protobuf
|
| 7 |
-
Pillow>=9.0.0
|
| 8 |
-
requests>=2.28.0
|
| 9 |
-
numpy>=1.21.0
|
| 10 |
-
psutil>=5.8.0
|
|
|
|
| 3 |
accelerate>=0.25.0
|
| 4 |
sentencepiece
|
| 5 |
safetensors
|
| 6 |
+
protobuf
|
|
|
|
|
|
|
|
|
|
|
|