|
|
|
|
|
""" |
|
|
ACTUAL_REALITY_MODULE_v2.py |
|
|
|
|
|
A modeled/simulated analytical engine for studying layered governance, |
|
|
control mechanisms, and how surface events may map to shifts in |
|
|
decision authority and resource control. |
|
|
|
|
|
IMPORTANT: This is a model and simulation tool. Outputs are model-derived |
|
|
inferences based on encoded patterns and configurable heuristics, NOT |
|
|
definitive factual claims about historical events. Use responsibly. |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
import json |
|
|
import logging |
|
|
from dataclasses import dataclass, field |
|
|
from typing import Dict, Any, List, Optional, Tuple |
|
|
import math |
|
|
import copy |
|
|
|
|
|
|
|
|
try: |
|
|
import pandas as pd |
|
|
except Exception: |
|
|
pd = None |
|
|
|
|
|
logger = logging.getLogger("ActualReality") |
|
|
handler = logging.StreamHandler() |
|
|
formatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s") |
|
|
handler.setFormatter(formatter) |
|
|
logger.addHandler(handler) |
|
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ActualReality: |
|
|
""" |
|
|
Encodes the layered control architecture and baseline power metrics. |
|
|
|
|
|
NOTE: All numeric values are model parameters. They can and should be |
|
|
recalibrated against data if used for research. |
|
|
""" |
|
|
|
|
|
control_architecture: Dict[str, Dict[str, str]] = field(default_factory=dict) |
|
|
power_metrics: Dict[str, Dict[str, float]] = field(default_factory=dict) |
|
|
reality_gap: Dict[str, float] = field(default_factory=dict) |
|
|
|
|
|
def __post_init__(self): |
|
|
if not self.control_architecture: |
|
|
self.control_architecture = { |
|
|
"surface_government": { |
|
|
"presidents": "replaceable_figureheads", |
|
|
"congress": "theater_for_public_drama", |
|
|
"courts": "legitimization_apparatus", |
|
|
"elections": "controlled_opposition_cycles", |
|
|
}, |
|
|
"permanent_government": { |
|
|
"intelligence_community": "continuous_operations", |
|
|
"military_industrial": "permanent_funding", |
|
|
"central_banking": "economic_control", |
|
|
"corporate_monopolies": "policy_enforcement", |
|
|
}, |
|
|
"control_mechanisms": { |
|
|
"information_warfare": "narrative_control", |
|
|
"economic_leverage": "dependency_creation", |
|
|
"psychological_operations": "perception_management", |
|
|
"violence_monopoly": "ultimate_enforcement", |
|
|
}, |
|
|
} |
|
|
|
|
|
if not self.power_metrics: |
|
|
self.power_metrics = { |
|
|
"decision_power_distribution": { |
|
|
"public_elections": 0.05, |
|
|
"intelligence_directives": 0.35, |
|
|
"corporate_policy": 0.25, |
|
|
"financial_system": 0.20, |
|
|
"military_industrial": 0.15, |
|
|
}, |
|
|
"policy_origination": { |
|
|
"public_demand": 0.08, |
|
|
"intelligence_assessments": 0.42, |
|
|
"corporate_lobbying": 0.32, |
|
|
"financial_imperatives": 0.18, |
|
|
}, |
|
|
"consequence_immunity": { |
|
|
"elected_officials": 0.15, |
|
|
"intelligence_operatives": 0.85, |
|
|
"corporate_executives": 0.70, |
|
|
"central_bankers": 0.90, |
|
|
}, |
|
|
} |
|
|
|
|
|
if not self.reality_gap: |
|
|
self.reality_gap = { |
|
|
"democracy_perception_gap": 0.87, |
|
|
"freedom_illusion_index": 0.76, |
|
|
"control_opacity_factor": 0.92, |
|
|
"historical_amnesia_rate": 0.81, |
|
|
} |
|
|
|
|
|
def analyze_power_transfer(self, event_type: str, actor: str, target: str) -> Dict[str, Any]: |
|
|
""" |
|
|
High-level mapping for well-known event-types to model components. |
|
|
|
|
|
Returns a dictionary of narrative/actual mappings as a baseline. |
|
|
""" |
|
|
power_analysis = { |
|
|
"kennedy_assassination": { |
|
|
"surface_narrative": "lone_gunman", |
|
|
"actual_dynamics": "institutional_enforcement_of_boundaries", |
|
|
"power_transfer": "presidential_authority -> intelligence_autonomy", |
|
|
"precedent_set": "challenge_permanent_government -> elimination", |
|
|
"propagation_method": "public_spectacle_with_hidden_mechanisms", |
|
|
"verification_control": "media_narrative + official_investigation", |
|
|
"resilience_demonstrated": "system_survived_public_scrutiny", |
|
|
}, |
|
|
"economic_crises": { |
|
|
"surface_narrative": "market_cycles", |
|
|
"actual_dynamics": "controlled_resets", |
|
|
"power_transfer": "public_wealth -> institutional_consolidation", |
|
|
"precedent_set": "privatize_gains_socialize_losses", |
|
|
"propagation_method": "complexity_obfuscation", |
|
|
"verification_control": "economic_theories + expert_consensus", |
|
|
"resilience_demonstrated": "too_big_to_fail_doctrine", |
|
|
}, |
|
|
"pandemic_response": { |
|
|
"surface_narrative": "public_health", |
|
|
"actual_dynamics": "control_infrastructure_test", |
|
|
"power_transfer": "individual_autonomy -> institutional_control", |
|
|
"precedent_set": "emergency_powers_normalization", |
|
|
"propagation_method": "fear_amplification + censorship", |
|
|
"verification_control": "scientific_consensus_enforcement", |
|
|
"resilience_demonstrated": "global_coordination_capability", |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
return power_analysis.get(event_type, { |
|
|
"surface_narrative": "unknown", |
|
|
"actual_dynamics": "unknown", |
|
|
"power_transfer": "unknown", |
|
|
"precedent_set": None, |
|
|
"propagation_method": None, |
|
|
"verification_control": None, |
|
|
"resilience_demonstrated": None, |
|
|
}) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ControlSystemDynamics: |
|
|
""" |
|
|
Encoded operational patterns of how control has been maintained historically. |
|
|
""" |
|
|
|
|
|
historical_patterns: Dict[str, Dict[str, Any]] = field(default_factory=dict) |
|
|
operational_doctrine: Dict[str, Any] = field(default_factory=dict) |
|
|
|
|
|
def __post_init__(self): |
|
|
if not self.historical_patterns: |
|
|
self.historical_patterns = { |
|
|
"reformer_elimination": { |
|
|
"success_rate": 0.94, |
|
|
"methods": ["assassination", "character_assassination", "legal_entrapment"], |
|
|
"detection_avoidance": "plausible_deniability + controlled_narrative", |
|
|
"historical_examples": ["JFK", "RFK", "MLK", "Malcolm_X"], |
|
|
}, |
|
|
"system_preservation": { |
|
|
"success_rate": 0.98, |
|
|
"methods": ["economic_crises", "wars", "pandemics", "terror_events"], |
|
|
"function": "reset_public_expectations + consolidate_power", |
|
|
"recurrence_cycle": "7-15_years", |
|
|
}, |
|
|
"truth_suppression": { |
|
|
"success_rate": 0.89, |
|
|
"methods": ["classification", "media_control", "academic_gatekeeping", "social_ostracism"], |
|
|
"vulnerability": "persistent_whistleblowers + technological_disruption", |
|
|
"modern_challenge": "decentralized_information_propagation", |
|
|
}, |
|
|
} |
|
|
|
|
|
if not self.operational_doctrine: |
|
|
self.operational_doctrine = { |
|
|
"response_scale": { |
|
|
"low": ["ignore", "discredit_source", "create_counter_narrative"], |
|
|
"medium": ["legal_harassment", "financial_pressure", "character_assassination"], |
|
|
"high": ["elimination", "institutional_destruction", "event_creation"], |
|
|
} |
|
|
} |
|
|
|
|
|
def predict_system_response(self, threat_type: str, threat_level: str) -> List[str]: |
|
|
""" |
|
|
Predict how the control system model would respond to a given threat. |
|
|
""" |
|
|
matrix = { |
|
|
"truth_revelation": { |
|
|
"low_level": ["ignore", "discredit_source", "create_counter_narrative"], |
|
|
"medium_level": ["legal_harassment", "financial_pressure", "character_assassination"], |
|
|
"high_level": ["elimination", "institutional_destruction", "event_creation"], |
|
|
}, |
|
|
"sovereign_technology": { |
|
|
"low_level": ["patent_control", "regulatory_barriers", "acquisition"], |
|
|
"medium_level": ["infiltration", "sabotage", "economic_warfare"], |
|
|
"high_level": ["classification", "national_security_claim", "elimination"], |
|
|
}, |
|
|
"mass_awakening": { |
|
|
"low_level": ["media_distraction", "social_division", "entertainment_saturation"], |
|
|
"medium_level": ["economic_crisis", "terror_event", "pandemic_response"], |
|
|
"high_level": ["internet_control", "financial_reset", "martial_law_test"], |
|
|
}, |
|
|
} |
|
|
return matrix.get(threat_type, {}).get(threat_level, []) |
|
|
|
|
|
|
|
|
class RealityInterface: |
|
|
""" |
|
|
Bridge that transforms surface events into model-derived analyses of actual dynamics. |
|
|
""" |
|
|
|
|
|
def __init__(self, reality: Optional[ActualReality] = None, control_dynamics: Optional[ControlSystemDynamics] = None): |
|
|
self.actual_reality = reality if reality is not None else ActualReality() |
|
|
self.control_dynamics = control_dynamics if control_dynamics is not None else ControlSystemDynamics() |
|
|
|
|
|
|
|
|
self.keyword_similarity_weight = 0.6 |
|
|
self.metrics_shift_sensitivity = 0.25 |
|
|
|
|
|
|
|
|
self._event_keymap = { |
|
|
"kennedy_assassination": ["assassination", "president", "punctuated_event", "public_spectacle"], |
|
|
"economic_crises": ["banking", "financial", "bailout", "crash", "reset"], |
|
|
"pandemic_response": ["disease", "lockdown", "emergency", "public_health", "vaccination"], |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
|
return [t.strip().lower() for t in text.replace("_", " ").split() if t.strip()] |
|
|
|
|
|
def _similarity_score(self, tokens: List[str], pattern_tokens: List[str]) -> float: |
|
|
""" |
|
|
Simple Jaccard-like similarity for token overlap; returns score in [0,1]. |
|
|
""" |
|
|
s = set(tokens) |
|
|
p = set(pattern_tokens) |
|
|
if not s and not p: |
|
|
return 0.0 |
|
|
inter = s.intersection(p) |
|
|
union = s.union(p) |
|
|
return float(len(inter)) / max(1.0, len(union)) |
|
|
|
|
|
def _decode_actual_dynamics(self, event: str) -> Dict[str, Any]: |
|
|
""" |
|
|
Heuristic extraction of what's happening beneath a surface event. |
|
|
|
|
|
Approach: |
|
|
- If event is a known key (exact), return the baseline mapping from ActualReality |
|
|
- Otherwise, try fuzzy keyword matching against internal patterns and return |
|
|
the best-match mapping with a confidence score. |
|
|
""" |
|
|
event_lower = event.strip().lower() |
|
|
baseline = self.actual_reality.analyze_power_transfer(event_lower, actor="unknown", target="unknown") |
|
|
if baseline and baseline.get("surface_narrative") != "unknown": |
|
|
|
|
|
baseline["inference_confidence"] = 0.85 |
|
|
baseline["matched_pattern"] = event_lower |
|
|
return baseline |
|
|
|
|
|
|
|
|
tokens = self._tokenize(event_lower) |
|
|
best_score = 0.0 |
|
|
best_key = None |
|
|
for key, kws in self._event_keymap.items(): |
|
|
score = self._similarity_score(tokens, kws) |
|
|
if score > best_score: |
|
|
best_score = score |
|
|
best_key = key |
|
|
|
|
|
if best_key: |
|
|
mapping = self.actual_reality.analyze_power_transfer(best_key, actor="unknown", target="unknown") |
|
|
mapping["inference_confidence"] = round(self.keyword_similarity_weight * best_score + 0.15, 3) |
|
|
mapping["matched_pattern"] = best_key |
|
|
mapping["match_score"] = round(best_score, 3) |
|
|
return mapping |
|
|
|
|
|
|
|
|
return { |
|
|
"surface_narrative": "unmapped_event", |
|
|
"actual_dynamics": "ambiguous", |
|
|
"power_transfer": None, |
|
|
"precedent_set": None, |
|
|
"propagation_method": None, |
|
|
"verification_control": None, |
|
|
"resilience_demonstrated": None, |
|
|
"inference_confidence": 0.05, |
|
|
} |
|
|
|
|
|
def _calculate_power_transfer(self, event: str) -> Dict[str, float]: |
|
|
""" |
|
|
Quantifies how power might be redistributed as a result of 'event' |
|
|
relative to baseline `self.actual_reality.power_metrics`. |
|
|
|
|
|
Strategy: |
|
|
- Identify the dominant domains implicated by the event (heuristic) |
|
|
- Apply small perturbations to baseline distributions proportional to |
|
|
event significance and the `metrics_shift_sensitivity`. |
|
|
- Keep distributions normalized where appropriate. |
|
|
""" |
|
|
|
|
|
domain_map = { |
|
|
"intelligence": ["assassin", "intel", "cia", "intellegence", "intelligence"], |
|
|
"financial": ["bank", "banking", "financial", "bailout", "economy", "crash"], |
|
|
"public_elections": ["election", "vote", "voter", "campaign"], |
|
|
"military": ["war", "military", "soldier", "force"], |
|
|
"public_health": ["pandemic", "disease", "lockdown", "vaccine", "virus"], |
|
|
"corporate_policy": ["corporate", "lobby", "merger", "acquisition"], |
|
|
} |
|
|
|
|
|
tokens = self._tokenize(event) |
|
|
domain_scores = {k: 0.0 for k in domain_map.keys()} |
|
|
for dom, kws in domain_map.items(): |
|
|
for kw in kws: |
|
|
if kw in tokens: |
|
|
domain_scores[dom] += 1.0 |
|
|
|
|
|
total = sum(domain_scores.values()) or 1.0 |
|
|
for k in domain_scores: |
|
|
domain_scores[k] = domain_scores[k] / total |
|
|
|
|
|
|
|
|
baseline = copy.deepcopy(self.actual_reality.power_metrics.get("decision_power_distribution", {})) |
|
|
|
|
|
if not baseline: |
|
|
baseline = {"public_elections": 0.2, "intelligence_directives": 0.2, "corporate_policy": 0.2, "financial_system": 0.2, "military_industrial": 0.2} |
|
|
|
|
|
|
|
|
perturbed = {} |
|
|
for k, v in baseline.items(): |
|
|
|
|
|
if "intelligence" in k: |
|
|
dom_key = "intelligence" |
|
|
elif "financial" in k or "financial_system" in k: |
|
|
dom_key = "financial" |
|
|
elif "corporate" in k: |
|
|
dom_key = "corporate_policy" |
|
|
elif "military" in k or "military_industrial" in k: |
|
|
dom_key = "military" |
|
|
else: |
|
|
dom_key = "public_elections" |
|
|
|
|
|
|
|
|
shift = (domain_scores.get(dom_key, 0.0) - 0.1) * self.metrics_shift_sensitivity |
|
|
perturbed[k] = max(0.0, v + shift) |
|
|
|
|
|
|
|
|
s = sum(perturbed.values()) |
|
|
if s <= 0: |
|
|
|
|
|
perturbed = baseline |
|
|
s = sum(perturbed.values()) |
|
|
|
|
|
for k in perturbed: |
|
|
perturbed[k] = round(perturbed[k] / s, 3) |
|
|
|
|
|
return perturbed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_event(self, surface_event: str) -> Dict[str, Any]: |
|
|
""" |
|
|
Main entry point to decode and quantify an event. |
|
|
|
|
|
Returns: |
|
|
{ |
|
|
"surface_event": <str>, |
|
|
"decoded": <dict from _decode_actual_dynamics>, |
|
|
"power_transfer": <dict of perturbed metrics>, |
|
|
"system_response_prediction": <list of responses from ControlSystemDynamics>, |
|
|
"vulnerabilities": <list heuristically inferred>, |
|
|
} |
|
|
""" |
|
|
logger.info("Analyzing event: %s", surface_event) |
|
|
decoded = self._decode_actual_dynamics(surface_event) |
|
|
power_transfer = self._calculate_power_transfer(surface_event) |
|
|
|
|
|
|
|
|
|
|
|
ad = (decoded.get("actual_dynamics") or "").lower() |
|
|
if "control" in ad or "enforcement" in ad or "elimination" in ad: |
|
|
threat_type = "truth_revelation" |
|
|
level = "high_level" |
|
|
elif "test" in ad or "infrastructure" in ad: |
|
|
threat_type = "mass_awakening" |
|
|
level = "medium_level" |
|
|
else: |
|
|
threat_type = "truth_revelation" |
|
|
level = "low_level" |
|
|
|
|
|
system_response = self.control_dynamics.predict_system_response(threat_type, level) |
|
|
|
|
|
|
|
|
vulnerabilities = [] |
|
|
if decoded.get("inference_confidence", 0) < 0.25: |
|
|
vulnerabilities.append("low_model_confidence_on_mapping") |
|
|
if power_transfer.get("public_elections", 0) > 0.15: |
|
|
vulnerabilities.append("visible_public_influence") |
|
|
if power_transfer.get("intelligence_directives", 0) > 0.4: |
|
|
vulnerabilities.append("intelligence_autonomy_dominant") |
|
|
|
|
|
result = { |
|
|
"surface_event": surface_event, |
|
|
"decoded": decoded, |
|
|
"power_transfer": power_transfer, |
|
|
"system_response_prediction": system_response, |
|
|
"vulnerabilities": vulnerabilities, |
|
|
} |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_json(self, analysis: Dict[str, Any]) -> str: |
|
|
return json.dumps(analysis, indent=2, sort_keys=False) |
|
|
|
|
|
def to_dataframe(self, analysis: Dict[str, Any]) -> Optional["pd.DataFrame"]: |
|
|
""" |
|
|
Convert the most important numeric parts of analysis to a DataFrame |
|
|
for downstream consumption. Returns None if pandas not installed. |
|
|
""" |
|
|
if pd is None: |
|
|
logger.warning("pandas not available; to_dataframe will return None") |
|
|
return None |
|
|
|
|
|
|
|
|
row = {"surface_event": analysis.get("surface_event", "")} |
|
|
pt = analysis.get("power_transfer", {}) |
|
|
for k, v in pt.items(): |
|
|
row[f"pt_{k}"] = v |
|
|
decoded = analysis.get("decoded", {}) |
|
|
row["decoded_inference_confidence"] = decoded.get("inference_confidence", None) |
|
|
row["decoded_matched_pattern"] = decoded.get("matched_pattern", None) |
|
|
df = pd.DataFrame([row]) |
|
|
return df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def simulate_event_impact(self, surface_event: str, steps: int = 3) -> Dict[str, Any]: |
|
|
""" |
|
|
Simulate iterative propagation of an event's impact over `steps` cycles. |
|
|
Each step perturbs the internal reality.power_metrics (decision distribution) |
|
|
slightly towards the event-implied distribution. Returns the trajectory. |
|
|
""" |
|
|
trajectory = [] |
|
|
local_metrics = copy.deepcopy(self.actual_reality.power_metrics.get("decision_power_distribution", {})) |
|
|
if not local_metrics: |
|
|
local_metrics = {"public_elections": 0.2, "intelligence_directives": 0.2, "corporate_policy": 0.2, "financial_system": 0.2, "military_industrial": 0.2} |
|
|
|
|
|
target = self._calculate_power_transfer(surface_event) |
|
|
|
|
|
for i in range(steps): |
|
|
|
|
|
for k in local_metrics: |
|
|
local_metrics[k] = round(local_metrics[k] + (target.get(k, 0) - local_metrics[k]) * 0.3, 4) |
|
|
|
|
|
s = sum(local_metrics.values()) or 1.0 |
|
|
for k in local_metrics: |
|
|
local_metrics[k] = round(local_metrics[k] / s, 4) |
|
|
trajectory.append({"step": i + 1, "metrics": copy.deepcopy(local_metrics)}) |
|
|
|
|
|
return {"event": surface_event, "trajectory": trajectory, "final_metrics": local_metrics} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def demonstrate_actual_reality_demo(): |
|
|
ri = RealityInterface() |
|
|
print("ACTUAL REALITY MODULE v2 - DEMONSTRATION") |
|
|
print("=" * 60) |
|
|
example_events = [ |
|
|
"kennedy_assassination", |
|
|
"global_banking_crash bailout", |
|
|
"novel_virus_lockdown vaccination campaign", |
|
|
"small_local_election upset", |
|
|
] |
|
|
|
|
|
for ev in example_events: |
|
|
analysis = ri.analyze_event(ev) |
|
|
print("\n>> Surface event:", ev) |
|
|
print("Decoded (short):", analysis["decoded"].get("actual_dynamics")) |
|
|
print("Inference confidence:", analysis["decoded"].get("inference_confidence")) |
|
|
print("Power transfer snapshot:") |
|
|
for k, v in analysis["power_transfer"].items(): |
|
|
print(f" {k}: {v:.0%}") |
|
|
print("Predicted system response:", ", ".join(analysis["system_response_prediction"]) or "none") |
|
|
|
|
|
sim = ri.simulate_event_impact(ev, steps=3) |
|
|
print("Simulated metric trajectory (final):") |
|
|
for k, v in sim["final_metrics"].items(): |
|
|
print(f" {k}: {v:.0%}") |
|
|
|
|
|
|
|
|
ev = "novel_virus_lockdown vaccination campaign" |
|
|
analysis = ri.analyze_event(ev) |
|
|
print("\nJSON export (excerpt):") |
|
|
print(ri.to_json({k: analysis[k] for k in ["surface_event", "decoded", "power_transfer"]})) |
|
|
|
|
|
df = ri.to_dataframe(analysis) |
|
|
if df is not None: |
|
|
print("\nPandas DataFrame preview:") |
|
|
print(df.to_string(index=False)) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demonstrate_actual_reality_demo() |