AGI_COMPLETE / ACTUAL_REALITY_MODULE_V2
upgraedd's picture
Create ACTUAL_REALITY_MODULE_V2
71b05a9 verified
#!/usr/bin/env python3
"""
ACTUAL_REALITY_MODULE_v2.py
A modeled/simulated analytical engine for studying layered governance,
control mechanisms, and how surface events may map to shifts in
decision authority and resource control.
IMPORTANT: This is a model and simulation tool. Outputs are model-derived
inferences based on encoded patterns and configurable heuristics, NOT
definitive factual claims about historical events. Use responsibly.
"""
from __future__ import annotations
import json
import logging
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional, Tuple
import math
import copy
# Optional: used for DataFrame output if pandas is available
try:
import pandas as pd
except Exception:
pd = None
logger = logging.getLogger("ActualReality")
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
@dataclass
class ActualReality:
"""
Encodes the layered control architecture and baseline power metrics.
NOTE: All numeric values are model parameters. They can and should be
recalibrated against data if used for research.
"""
control_architecture: Dict[str, Dict[str, str]] = field(default_factory=dict)
power_metrics: Dict[str, Dict[str, float]] = field(default_factory=dict)
reality_gap: Dict[str, float] = field(default_factory=dict)
def __post_init__(self):
if not self.control_architecture:
self.control_architecture = {
"surface_government": {
"presidents": "replaceable_figureheads",
"congress": "theater_for_public_drama",
"courts": "legitimization_apparatus",
"elections": "controlled_opposition_cycles",
},
"permanent_government": {
"intelligence_community": "continuous_operations",
"military_industrial": "permanent_funding",
"central_banking": "economic_control",
"corporate_monopolies": "policy_enforcement",
},
"control_mechanisms": {
"information_warfare": "narrative_control",
"economic_leverage": "dependency_creation",
"psychological_operations": "perception_management",
"violence_monopoly": "ultimate_enforcement",
},
}
if not self.power_metrics:
self.power_metrics = {
"decision_power_distribution": {
"public_elections": 0.05,
"intelligence_directives": 0.35,
"corporate_policy": 0.25,
"financial_system": 0.20,
"military_industrial": 0.15,
},
"policy_origination": {
"public_demand": 0.08,
"intelligence_assessments": 0.42,
"corporate_lobbying": 0.32,
"financial_imperatives": 0.18,
},
"consequence_immunity": {
"elected_officials": 0.15,
"intelligence_operatives": 0.85,
"corporate_executives": 0.70,
"central_bankers": 0.90,
},
}
if not self.reality_gap:
self.reality_gap = {
"democracy_perception_gap": 0.87,
"freedom_illusion_index": 0.76,
"control_opacity_factor": 0.92,
"historical_amnesia_rate": 0.81,
}
def analyze_power_transfer(self, event_type: str, actor: str, target: str) -> Dict[str, Any]:
"""
High-level mapping for well-known event-types to model components.
Returns a dictionary of narrative/actual mappings as a baseline.
"""
power_analysis = {
"kennedy_assassination": {
"surface_narrative": "lone_gunman",
"actual_dynamics": "institutional_enforcement_of_boundaries",
"power_transfer": "presidential_authority -> intelligence_autonomy",
"precedent_set": "challenge_permanent_government -> elimination",
"propagation_method": "public_spectacle_with_hidden_mechanisms",
"verification_control": "media_narrative + official_investigation",
"resilience_demonstrated": "system_survived_public_scrutiny",
},
"economic_crises": {
"surface_narrative": "market_cycles",
"actual_dynamics": "controlled_resets",
"power_transfer": "public_wealth -> institutional_consolidation",
"precedent_set": "privatize_gains_socialize_losses",
"propagation_method": "complexity_obfuscation",
"verification_control": "economic_theories + expert_consensus",
"resilience_demonstrated": "too_big_to_fail_doctrine",
},
"pandemic_response": {
"surface_narrative": "public_health",
"actual_dynamics": "control_infrastructure_test",
"power_transfer": "individual_autonomy -> institutional_control",
"precedent_set": "emergency_powers_normalization",
"propagation_method": "fear_amplification + censorship",
"verification_control": "scientific_consensus_enforcement",
"resilience_demonstrated": "global_coordination_capability",
},
}
# Use baseline if present, else return an interpretive placeholder.
return power_analysis.get(event_type, {
"surface_narrative": "unknown",
"actual_dynamics": "unknown",
"power_transfer": "unknown",
"precedent_set": None,
"propagation_method": None,
"verification_control": None,
"resilience_demonstrated": None,
})
@dataclass
class ControlSystemDynamics:
"""
Encoded operational patterns of how control has been maintained historically.
"""
historical_patterns: Dict[str, Dict[str, Any]] = field(default_factory=dict)
operational_doctrine: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
if not self.historical_patterns:
self.historical_patterns = {
"reformer_elimination": {
"success_rate": 0.94,
"methods": ["assassination", "character_assassination", "legal_entrapment"],
"detection_avoidance": "plausible_deniability + controlled_narrative",
"historical_examples": ["JFK", "RFK", "MLK", "Malcolm_X"],
},
"system_preservation": {
"success_rate": 0.98,
"methods": ["economic_crises", "wars", "pandemics", "terror_events"],
"function": "reset_public_expectations + consolidate_power",
"recurrence_cycle": "7-15_years",
},
"truth_suppression": {
"success_rate": 0.89,
"methods": ["classification", "media_control", "academic_gatekeeping", "social_ostracism"],
"vulnerability": "persistent_whistleblowers + technological_disruption",
"modern_challenge": "decentralized_information_propagation",
},
}
if not self.operational_doctrine:
self.operational_doctrine = {
"response_scale": {
"low": ["ignore", "discredit_source", "create_counter_narrative"],
"medium": ["legal_harassment", "financial_pressure", "character_assassination"],
"high": ["elimination", "institutional_destruction", "event_creation"],
}
}
def predict_system_response(self, threat_type: str, threat_level: str) -> List[str]:
"""
Predict how the control system model would respond to a given threat.
"""
matrix = {
"truth_revelation": {
"low_level": ["ignore", "discredit_source", "create_counter_narrative"],
"medium_level": ["legal_harassment", "financial_pressure", "character_assassination"],
"high_level": ["elimination", "institutional_destruction", "event_creation"],
},
"sovereign_technology": {
"low_level": ["patent_control", "regulatory_barriers", "acquisition"],
"medium_level": ["infiltration", "sabotage", "economic_warfare"],
"high_level": ["classification", "national_security_claim", "elimination"],
},
"mass_awakening": {
"low_level": ["media_distraction", "social_division", "entertainment_saturation"],
"medium_level": ["economic_crisis", "terror_event", "pandemic_response"],
"high_level": ["internet_control", "financial_reset", "martial_law_test"],
},
}
return matrix.get(threat_type, {}).get(threat_level, [])
class RealityInterface:
"""
Bridge that transforms surface events into model-derived analyses of actual dynamics.
"""
def __init__(self, reality: Optional[ActualReality] = None, control_dynamics: Optional[ControlSystemDynamics] = None):
self.actual_reality = reality if reality is not None else ActualReality()
self.control_dynamics = control_dynamics if control_dynamics is not None else ControlSystemDynamics()
# Tunable parameters for heuristic inference
self.keyword_similarity_weight = 0.6
self.metrics_shift_sensitivity = 0.25 # how strongly events perturb baseline metrics
# Minimal dictionary of event-to-pattern keywords for similarity scoring
self._event_keymap = {
"kennedy_assassination": ["assassination", "president", "punctuated_event", "public_spectacle"],
"economic_crises": ["banking", "financial", "bailout", "crash", "reset"],
"pandemic_response": ["disease", "lockdown", "emergency", "public_health", "vaccination"],
# user may supply more; it's expandable
}
# ----------------------------
# Core analysis implementations
# ----------------------------
def _tokenize(self, text: str) -> List[str]:
return [t.strip().lower() for t in text.replace("_", " ").split() if t.strip()]
def _similarity_score(self, tokens: List[str], pattern_tokens: List[str]) -> float:
"""
Simple Jaccard-like similarity for token overlap; returns score in [0,1].
"""
s = set(tokens)
p = set(pattern_tokens)
if not s and not p:
return 0.0
inter = s.intersection(p)
union = s.union(p)
return float(len(inter)) / max(1.0, len(union))
def _decode_actual_dynamics(self, event: str) -> Dict[str, Any]:
"""
Heuristic extraction of what's happening beneath a surface event.
Approach:
- If event is a known key (exact), return the baseline mapping from ActualReality
- Otherwise, try fuzzy keyword matching against internal patterns and return
the best-match mapping with a confidence score.
"""
event_lower = event.strip().lower()
baseline = self.actual_reality.analyze_power_transfer(event_lower, actor="unknown", target="unknown")
if baseline and baseline.get("surface_narrative") != "unknown":
# attach a confidence for exact-match baseline
baseline["inference_confidence"] = 0.85
baseline["matched_pattern"] = event_lower
return baseline
# Fallback: fuzzy match against event_keymap
tokens = self._tokenize(event_lower)
best_score = 0.0
best_key = None
for key, kws in self._event_keymap.items():
score = self._similarity_score(tokens, kws)
if score > best_score:
best_score = score
best_key = key
if best_key:
mapping = self.actual_reality.analyze_power_transfer(best_key, actor="unknown", target="unknown")
mapping["inference_confidence"] = round(self.keyword_similarity_weight * best_score + 0.15, 3)
mapping["matched_pattern"] = best_key
mapping["match_score"] = round(best_score, 3)
return mapping
# If nothing matches, return a reasoned default
return {
"surface_narrative": "unmapped_event",
"actual_dynamics": "ambiguous",
"power_transfer": None,
"precedent_set": None,
"propagation_method": None,
"verification_control": None,
"resilience_demonstrated": None,
"inference_confidence": 0.05,
}
def _calculate_power_transfer(self, event: str) -> Dict[str, float]:
"""
Quantifies how power might be redistributed as a result of 'event'
relative to baseline `self.actual_reality.power_metrics`.
Strategy:
- Identify the dominant domains implicated by the event (heuristic)
- Apply small perturbations to baseline distributions proportional to
event significance and the `metrics_shift_sensitivity`.
- Keep distributions normalized where appropriate.
"""
# Simple heuristic: map keywords to domains
domain_map = {
"intelligence": ["assassin", "intel", "cia", "intellegence", "intelligence"],
"financial": ["bank", "banking", "financial", "bailout", "economy", "crash"],
"public_elections": ["election", "vote", "voter", "campaign"],
"military": ["war", "military", "soldier", "force"],
"public_health": ["pandemic", "disease", "lockdown", "vaccine", "virus"],
"corporate_policy": ["corporate", "lobby", "merger", "acquisition"],
}
tokens = self._tokenize(event)
domain_scores = {k: 0.0 for k in domain_map.keys()}
for dom, kws in domain_map.items():
for kw in kws:
if kw in tokens:
domain_scores[dom] += 1.0
# Normalize domain scores
total = sum(domain_scores.values()) or 1.0
for k in domain_scores:
domain_scores[k] = domain_scores[k] / total
# Start with a copy of baseline decision distribution
baseline = copy.deepcopy(self.actual_reality.power_metrics.get("decision_power_distribution", {}))
# If baseline empty, create a uniform fallback
if not baseline:
baseline = {"public_elections": 0.2, "intelligence_directives": 0.2, "corporate_policy": 0.2, "financial_system": 0.2, "military_industrial": 0.2}
# Perturb baseline towards domains implicated
perturbed = {}
for k, v in baseline.items():
# Map baseline key to one of our domain buckets heuristically
if "intelligence" in k:
dom_key = "intelligence"
elif "financial" in k or "financial_system" in k:
dom_key = "financial"
elif "corporate" in k:
dom_key = "corporate_policy"
elif "military" in k or "military_industrial" in k:
dom_key = "military"
else:
dom_key = "public_elections"
# shift amount proportional to domain_scores[dom_key] and sensitivity
shift = (domain_scores.get(dom_key, 0.0) - 0.1) * self.metrics_shift_sensitivity
perturbed[k] = max(0.0, v + shift)
# Normalize perturbed so they sum to 1.0 (if baseline represented a simplex)
s = sum(perturbed.values())
if s <= 0:
# fall back to baseline
perturbed = baseline
s = sum(perturbed.values())
for k in perturbed:
perturbed[k] = round(perturbed[k] / s, 3)
return perturbed
# ----------------------------
# Public API
# ----------------------------
def analyze_event(self, surface_event: str) -> Dict[str, Any]:
"""
Main entry point to decode and quantify an event.
Returns:
{
"surface_event": <str>,
"decoded": <dict from _decode_actual_dynamics>,
"power_transfer": <dict of perturbed metrics>,
"system_response_prediction": <list of responses from ControlSystemDynamics>,
"vulnerabilities": <list heuristically inferred>,
}
"""
logger.info("Analyzing event: %s", surface_event)
decoded = self._decode_actual_dynamics(surface_event)
power_transfer = self._calculate_power_transfer(surface_event)
# Heuristic: map decoded['actual_dynamics'] to a response scenario
# We'll approximate threat_type by scanning decoded text
ad = (decoded.get("actual_dynamics") or "").lower()
if "control" in ad or "enforcement" in ad or "elimination" in ad:
threat_type = "truth_revelation"
level = "high_level"
elif "test" in ad or "infrastructure" in ad:
threat_type = "mass_awakening"
level = "medium_level"
else:
threat_type = "truth_revelation"
level = "low_level"
system_response = self.control_dynamics.predict_system_response(threat_type, level)
# Vulnerabilities (simple heuristic)
vulnerabilities = []
if decoded.get("inference_confidence", 0) < 0.25:
vulnerabilities.append("low_model_confidence_on_mapping")
if power_transfer.get("public_elections", 0) > 0.15:
vulnerabilities.append("visible_public_influence")
if power_transfer.get("intelligence_directives", 0) > 0.4:
vulnerabilities.append("intelligence_autonomy_dominant")
result = {
"surface_event": surface_event,
"decoded": decoded,
"power_transfer": power_transfer,
"system_response_prediction": system_response,
"vulnerabilities": vulnerabilities,
}
return result
# ----------------------------
# Utilities: export / display
# ----------------------------
def to_json(self, analysis: Dict[str, Any]) -> str:
return json.dumps(analysis, indent=2, sort_keys=False)
def to_dataframe(self, analysis: Dict[str, Any]) -> Optional["pd.DataFrame"]:
"""
Convert the most important numeric parts of analysis to a DataFrame
for downstream consumption. Returns None if pandas not installed.
"""
if pd is None:
logger.warning("pandas not available; to_dataframe will return None")
return None
# Flatten power_transfer and key decoded fields into a single-row DataFrame
row = {"surface_event": analysis.get("surface_event", "")}
pt = analysis.get("power_transfer", {})
for k, v in pt.items():
row[f"pt_{k}"] = v
decoded = analysis.get("decoded", {})
row["decoded_inference_confidence"] = decoded.get("inference_confidence", None)
row["decoded_matched_pattern"] = decoded.get("matched_pattern", None)
df = pd.DataFrame([row])
return df
# ----------------------------
# Simulation helpers
# ----------------------------
def simulate_event_impact(self, surface_event: str, steps: int = 3) -> Dict[str, Any]:
"""
Simulate iterative propagation of an event's impact over `steps` cycles.
Each step perturbs the internal reality.power_metrics (decision distribution)
slightly towards the event-implied distribution. Returns the trajectory.
"""
trajectory = []
local_metrics = copy.deepcopy(self.actual_reality.power_metrics.get("decision_power_distribution", {}))
if not local_metrics:
local_metrics = {"public_elections": 0.2, "intelligence_directives": 0.2, "corporate_policy": 0.2, "financial_system": 0.2, "military_industrial": 0.2}
target = self._calculate_power_transfer(surface_event)
for i in range(steps):
# simple linear interpolation towards target
for k in local_metrics:
local_metrics[k] = round(local_metrics[k] + (target.get(k, 0) - local_metrics[k]) * 0.3, 4)
# renormalize
s = sum(local_metrics.values()) or 1.0
for k in local_metrics:
local_metrics[k] = round(local_metrics[k] / s, 4)
trajectory.append({"step": i + 1, "metrics": copy.deepcopy(local_metrics)})
return {"event": surface_event, "trajectory": trajectory, "final_metrics": local_metrics}
# ----------------------------
# Demonstration / CLI-style run
# ----------------------------
def demonstrate_actual_reality_demo():
ri = RealityInterface()
print("ACTUAL REALITY MODULE v2 - DEMONSTRATION")
print("=" * 60)
example_events = [
"kennedy_assassination",
"global_banking_crash bailout",
"novel_virus_lockdown vaccination campaign",
"small_local_election upset",
]
for ev in example_events:
analysis = ri.analyze_event(ev)
print("\n>> Surface event:", ev)
print("Decoded (short):", analysis["decoded"].get("actual_dynamics"))
print("Inference confidence:", analysis["decoded"].get("inference_confidence"))
print("Power transfer snapshot:")
for k, v in analysis["power_transfer"].items():
print(f" {k}: {v:.0%}")
print("Predicted system response:", ", ".join(analysis["system_response_prediction"]) or "none")
# Show simulation trajectory for the event
sim = ri.simulate_event_impact(ev, steps=3)
print("Simulated metric trajectory (final):")
for k, v in sim["final_metrics"].items():
print(f" {k}: {v:.0%}")
# Example: export one as JSON & DataFrame (if pandas available)
ev = "novel_virus_lockdown vaccination campaign"
analysis = ri.analyze_event(ev)
print("\nJSON export (excerpt):")
print(ri.to_json({k: analysis[k] for k in ["surface_event", "decoded", "power_transfer"]}))
df = ri.to_dataframe(analysis)
if df is not None:
print("\nPandas DataFrame preview:")
print(df.to_string(index=False))
if __name__ == "__main__":
demonstrate_actual_reality_demo()