upgraedd commited on
Commit
232528f
·
verified ·
1 Parent(s): a7575e0

Create UNIFIED_NEURO_SYM

Browse files

An advanced unified consciousness theory

Files changed (1) hide show
  1. UNIFIED_NEURO_SYM +516 -0
UNIFIED_NEURO_SYM ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from dataclasses import dataclass
4
+ from typing import Dict, List, Tuple, Optional
5
+ from enum import Enum
6
+ import math
7
+ from scipy import spatial
8
+ import networkx as nx
9
+ from datetime import datetime
10
+
11
+ class ConsciousnessState(Enum):
12
+ DELTA = "Deep Unconscious" # 0.5-4 Hz
13
+ THETA = "Subconscious" # 4-8 Hz
14
+ ALPHA = "Relaxed Awareness" # 8-12 Hz
15
+ BETA = "Active Cognition" # 12-30 Hz
16
+ GAMMA = "Transcendent Unity" # 30-100 Hz
17
+
18
+ @dataclass
19
+ class QuantumSignature:
20
+ """Qualia state vector for consciousness experience"""
21
+ coherence: float # 0-1, quantum coherence level
22
+ entanglement: float # 0-1, non-local connectivity
23
+ qualia_vector: np.array # 5D experience vector [visual, emotional, cognitive, somatic, spiritual]
24
+ resonance_frequency: float # Hz, characteristic resonance
25
+
26
+ def calculate_qualia_distance(self, other: 'QuantumSignature') -> float:
27
+ """Calculate distance between qualia experiences"""
28
+ return spatial.distance.cosine(self.qualia_vector, other.qualia_vector)
29
+
30
+ @dataclass
31
+ class NeuralCorrelate:
32
+ """Brain region and frequency correlates"""
33
+ primary_regions: List[str] # e.g., ["PFC", "DMN", "Visual Cortex"]
34
+ frequency_band: ConsciousnessState
35
+ cross_hemispheric_sync: float # 0-1
36
+ neuroplasticity_impact: float # 0-1
37
+
38
+ @dataclass
39
+ class ArchetypalStrand:
40
+ """Symbolic DNA strand representing cultural genotype"""
41
+ name: str
42
+ symbolic_form: str # e.g., "Lion", "Sunburst"
43
+ temporal_depth: int # years in cultural record
44
+ spatial_distribution: float # 0-1 global prevalence
45
+ preservation_rate: float # 0-1 iconographic fidelity
46
+ quantum_coherence: float # 0-1 symbolic stability
47
+
48
+ @property
49
+ def symbolic_strength(self) -> float:
50
+ """Calculate overall archetypal strength"""
51
+ weights = [0.25, 0.25, 0.20, 0.30] # temporal, spatial, preservation, quantum
52
+ factors = [self.temporal_depth/10000, self.spatial_distribution,
53
+ self.preservation_rate, self.quantum_coherence]
54
+ return sum(w * f for w, f in zip(weights, factors))
55
+
56
+ class ConsciousnessTechnology:
57
+ """Neuro-symbolic interface technology"""
58
+
59
+ def __init__(self, name: str, archetype: ArchetypalStrand,
60
+ neural_correlate: NeuralCorrelate, quantum_sig: QuantumSignature):
61
+ self.name = name
62
+ self.archetype = archetype
63
+ self.neural_correlate = neural_correlate
64
+ self.quantum_signature = quantum_sig
65
+ self.activation_history = []
66
+
67
+ def activate(self, intensity: float = 1.0) -> Dict:
68
+ """Activate the consciousness technology"""
69
+ activation = {
70
+ 'timestamp': datetime.now(),
71
+ 'archetype': self.archetype.name,
72
+ 'intensity': intensity,
73
+ 'neural_state': self.neural_correlate.frequency_band,
74
+ 'quantum_coherence': self.quantum_signature.coherence * intensity,
75
+ 'qualia_experience': self.quantum_signature.qualia_vector * intensity
76
+ }
77
+ self.activation_history.append(activation)
78
+ return activation
79
+
80
+ class CulturalPhylogenetics:
81
+ """Evolutionary analysis of symbolic DNA"""
82
+
83
+ def __init__(self):
84
+ self.cladograms = {}
85
+ self.symbolic_traits = [
86
+ "solar_association", "predatory_nature", "sovereignty",
87
+ "transcendence", "protection", "wisdom", "chaos", "creation"
88
+ ]
89
+
90
+ def build_cladogram(self, archetypes: List[ArchetypalStrand],
91
+ trait_matrix: np.array) -> nx.DiGraph:
92
+ """Build evolutionary tree of archetypes"""
93
+ G = nx.DiGraph()
94
+
95
+ # Calculate distances based on symbolic traits
96
+ for i, arch1 in enumerate(archetypes):
97
+ for j, arch2 in enumerate(archetypes):
98
+ if i != j:
99
+ distance = spatial.distance.euclidean(
100
+ trait_matrix[i], trait_matrix[j]
101
+ )
102
+ G.add_edge(arch1.name, arch2.name, weight=distance)
103
+
104
+ # Find minimum spanning tree as evolutionary hypothesis
105
+ mst = nx.minimum_spanning_tree(G)
106
+ self.cladograms[tuple(a.name for a in archetypes)] = mst
107
+ return mst
108
+
109
+ def find_common_ancestor(self, archetype1: str, archetype2: str) -> Optional[str]:
110
+ """Find most recent common ancestor in cladogram"""
111
+ for cladogram in self.cladograms.values():
112
+ if archetype1 in cladogram and archetype2 in cladogram:
113
+ try:
114
+ # Find shortest path and get midpoint as common ancestor
115
+ path = nx.shortest_path(cladogram, archetype1, archetype2)
116
+ return path[len(path)//2] if len(path) > 2 else path[0]
117
+ except:
118
+ continue
119
+ return None
120
+
121
+ class GeospatialArchetypalMapper:
122
+ """GIS-based symbolic distribution analysis"""
123
+
124
+ def __init__(self):
125
+ self.archetype_distributions = {}
126
+ self.mutation_hotspots = []
127
+
128
+ def add_archetype_distribution(self, archetype: str, coordinates: List[Tuple[float, float]],
129
+ intensity: List[float], epoch: str):
130
+ """Add spatial data for an archetype"""
131
+ key = f"{archetype}_{epoch}"
132
+ self.archetype_distributions[key] = {
133
+ 'coordinates': coordinates,
134
+ 'intensity': intensity,
135
+ 'epoch': epoch,
136
+ 'centroid': self._calculate_centroid(coordinates, intensity)
137
+ }
138
+
139
+ def _calculate_centroid(self, coords: List[Tuple], intensities: List[float]) -> Tuple[float, float]:
140
+ """Calculate intensity-weighted centroid"""
141
+ if not coords:
142
+ return (0, 0)
143
+ weighted_lat = sum(c[0] * i for c, i in zip(coords, intensities)) / sum(intensities)
144
+ weighted_lon = sum(c[1] * i for c, i in zip(coords, intensities)) / sum(intensities)
145
+ return (weighted_lat, weighted_lon)
146
+
147
+ def detect_mutation_hotspots(self, threshold: float = 0.8):
148
+ """Detect regions of high symbolic mutation"""
149
+ for key, data in self.archetype_distributions.items():
150
+ intensity_variance = np.var(data['intensity'])
151
+ if intensity_variance > threshold:
152
+ self.mutation_hotspots.append({
153
+ 'location': key,
154
+ 'variance': intensity_variance,
155
+ 'epoch': data['epoch']
156
+ })
157
+
158
+ class ArchetypalEntropyIndex:
159
+ """Measure symbolic degradation and mutation rates"""
160
+
161
+ def __init__(self):
162
+ self.entropy_history = {}
163
+
164
+ def calculate_entropy(self, archetype: ArchetypalStrand,
165
+ historical_forms: List[str],
166
+ meaning_shifts: List[float]) -> float:
167
+ """Calculate entropy based on form and meaning stability"""
168
+
169
+ # Form entropy (morphological changes)
170
+ if len(historical_forms) > 1:
171
+ form_changes = len(set(historical_forms)) / len(historical_forms)
172
+ else:
173
+ form_changes = 0
174
+
175
+ # Meaning entropy (semantic drift)
176
+ meaning_entropy = np.std(meaning_shifts) if meaning_shifts else 0
177
+
178
+ # Combined entropy score (0-1, where 1 is high mutation)
179
+ total_entropy = (form_changes * 0.6) + (meaning_entropy * 0.4)
180
+
181
+ self.entropy_history[archetype.name] = {
182
+ 'entropy': total_entropy,
183
+ 'form_changes': form_changes,
184
+ 'meaning_drift': meaning_entropy,
185
+ 'last_updated': datetime.now()
186
+ }
187
+
188
+ return total_entropy
189
+
190
+ def get_high_entropy_archetypes(self, threshold: float = 0.7) -> List[str]:
191
+ """Get archetypes with high mutation rates"""
192
+ return [name for name, data in self.entropy_history.items()
193
+ if data['entropy'] > threshold]
194
+
195
+ class CrossCulturalResonanceMatrix:
196
+ """Compare archetypal strength across civilizations"""
197
+
198
+ def __init__(self):
199
+ self.civilization_data = {}
200
+ self.resonance_matrix = {}
201
+
202
+ def add_civilization_archetype(self, civilization: str, archetype: str,
203
+ strength: float, neural_impact: float):
204
+ """Add archetype data for a civilization"""
205
+ if civilization not in self.civilization_data:
206
+ self.civilization_data[civilization] = {}
207
+ self.civilization_data[civilization][archetype] = {
208
+ 'strength': strength,
209
+ 'neural_impact': neural_impact
210
+ }
211
+
212
+ def calculate_cross_resonance(self, arch1: str, arch2: str) -> float:
213
+ """Calculate resonance between two archetypes across civilizations"""
214
+ strengths_1 = []
215
+ strengths_2 = []
216
+
217
+ for civ_data in self.civilization_data.values():
218
+ if arch1 in civ_data and arch2 in civ_data:
219
+ strengths_1.append(civ_data[arch1]['strength'])
220
+ strengths_2.append(civ_data[arch2]['strength'])
221
+
222
+ if len(strengths_1) > 1:
223
+ resonance = np.corrcoef(strengths_1, strengths_2)[0,1]
224
+ return max(0, resonance) # Only positive resonance
225
+ return 0.0
226
+
227
+ def build_resonance_network(self) -> nx.Graph:
228
+ """Build network of archetypal resonances"""
229
+ G = nx.Graph()
230
+ archetypes = set()
231
+
232
+ # Get all unique archetypes
233
+ for civ_data in self.civilization_data.values():
234
+ archetypes.update(civ_data.keys())
235
+
236
+ # Calculate resonances
237
+ for arch1 in archetypes:
238
+ for arch2 in archetypes:
239
+ if arch1 != arch2:
240
+ resonance = self.calculate_cross_resonance(arch1, arch2)
241
+ if resonance > 0.3: # Threshold for meaningful connection
242
+ G.add_edge(arch1, arch2, weight=resonance)
243
+
244
+ return G
245
+
246
+ class SymbolicMutationEngine:
247
+ """Predict evolution of archetypes under cultural pressure"""
248
+
249
+ def __init__(self):
250
+ self.transformation_rules = {
251
+ 'weapon': ['tool', 'symbol', 'concept'],
252
+ 'physical': ['digital', 'virtual', 'neural'],
253
+ 'individual': ['networked', 'collective', 'distributed'],
254
+ 'concrete': ['abstract', 'algorithmic', 'quantum']
255
+ }
256
+ self.pressure_vectors = [
257
+ 'digitization', 'globalization', 'ecological_crisis',
258
+ 'neural_enhancement', 'quantum_awakening'
259
+ ]
260
+
261
+ def predict_mutation(self, current_archetype: str,
262
+ pressure_vector: str,
263
+ intensity: float = 0.5) -> List[str]:
264
+ """Predict possible future mutations of an archetype"""
265
+
266
+ mutations = []
267
+
268
+ # Apply transformation rules based on pressure vector
269
+ if pressure_vector == 'digitization':
270
+ for rule in ['physical->digital', 'concrete->algorithmic']:
271
+ mutated_form = self._apply_transformation(current_archetype, rule)
272
+ if mutated_form:
273
+ mutations.append(mutated_form)
274
+
275
+ elif pressure_vector == 'ecological_crisis':
276
+ for rule in ['individual->collective', 'weapon->tool']:
277
+ mutated_form = self._apply_transformation(current_archetype, rule)
278
+ if mutated_form:
279
+ mutations.append(mutated_form)
280
+
281
+ elif pressure_vector == 'quantum_awakening':
282
+ for rule in ['concrete->quantum', 'physical->neural']:
283
+ mutated_form = self._apply_transformation(current_archetype, rule)
284
+ if mutated_form:
285
+ mutations.append(mutated_form)
286
+
287
+ # Filter by intensity threshold
288
+ return [m for m in mutations if self._calculate_mutation_confidence(m, intensity) > 0.3]
289
+
290
+ def _apply_transformation(self, archetype: str, rule: str) -> Optional[str]:
291
+ """Apply a specific transformation rule"""
292
+ if '->' not in rule:
293
+ return None
294
+
295
+ source, target = rule.split('->')
296
+
297
+ # Simple rule-based transformations
298
+ transformations = {
299
+ 'spear': {
300
+ 'physical->digital': 'laser_designator',
301
+ 'weapon->tool': 'guided_implement',
302
+ 'individual->networked': 'swarm_coordination'
303
+ },
304
+ 'lion': {
305
+ 'physical->digital': 'data_guardian',
306
+ 'concrete->abstract': 'sovereignty_algorithm'
307
+ },
308
+ 'sun': {
309
+ 'concrete->quantum': 'consciousness_illumination',
310
+ 'physical->neural': 'neural_awakening'
311
+ }
312
+ }
313
+
314
+ return transformations.get(archetype, {}).get(rule)
315
+
316
+ def _calculate_mutation_confidence(self, mutation: str, intensity: float) -> float:
317
+ """Calculate confidence in mutation prediction"""
318
+ base_confidence = 0.5
319
+ return min(1.0, base_confidence + (intensity * 0.5))
320
+
321
+ class UniversalArchetypalTransmissionEngine:
322
+ """Main engine integrating all advanced modules"""
323
+
324
+ def __init__(self):
325
+ self.consciousness_tech = {}
326
+ self.phylogenetics = CulturalPhylogenetics()
327
+ self.geospatial_mapper = GeospatialArchetypalMapper()
328
+ self.entropy_calculator = ArchetypalEntropyIndex()
329
+ self.resonance_matrix = CrossCulturalResonanceMatrix()
330
+ self.mutation_engine = SymbolicMutationEngine()
331
+ self.archetypal_db = {}
332
+
333
+ def register_archetype(self, archetype: ArchetypalStrand,
334
+ consciousness_tech: ConsciousnessTechnology):
335
+ """Register a new archetype with its consciousness technology"""
336
+ self.archetypal_db[archetype.name] = archetype
337
+ self.consciousness_tech[archetype.name] = consciousness_tech
338
+
339
+ def prove_consciousness_architecture(self) -> pd.DataFrame:
340
+ """Comprehensive analysis of archetypal strength and coherence"""
341
+
342
+ results = []
343
+ for name, archetype in self.archetypal_db.items():
344
+ # Calculate comprehensive metrics
345
+ tech = self.consciousness_tech.get(name)
346
+ neural_impact = tech.neural_correlate.neuroplasticity_impact if tech else 0.5
347
+ quantum_strength = tech.quantum_signature.coherence if tech else 0.5
348
+
349
+ overall_strength = (
350
+ archetype.symbolic_strength * 0.4 +
351
+ neural_impact * 0.3 +
352
+ quantum_strength * 0.3
353
+ )
354
+
355
+ results.append({
356
+ 'Archetype': name,
357
+ 'Symbolic_Strength': archetype.symbolic_strength,
358
+ 'Temporal_Depth': archetype.temporal_depth,
359
+ 'Spatial_Distribution': archetype.spatial_distribution,
360
+ 'Quantum_Coherence': archetype.quantum_coherence,
361
+ 'Neural_Impact': neural_impact,
362
+ 'Overall_Strength': overall_strength,
363
+ 'Consciousness_State': tech.neural_correlate.frequency_band.value if tech else 'Unknown'
364
+ })
365
+
366
+ df = pd.DataFrame(results)
367
+ return df.sort_values('Overall_Strength', ascending=False)
368
+
369
+ def generate_cultural_diagnostic(self) -> Dict:
370
+ """Generate comprehensive cultural psyche diagnostic"""
371
+
372
+ strength_analysis = self.prove_consciousness_architecture()
373
+ high_entropy = self.entropy_calculator.get_high_entropy_archetypes()
374
+ resonance_net = self.resonance_matrix.build_resonance_network()
375
+
376
+ diagnostic = {
377
+ 'timestamp': datetime.now(),
378
+ 'top_archetypes': strength_analysis.head(3).to_dict('records'),
379
+ 'cultural_phase_shift_indicators': {
380
+ 'rising_archetypes': ['Feminine_Divine', 'Solar_Consciousness'],
381
+ 'declining_archetypes': ['Authority_Protection', 'Rigid_Hierarchy'],
382
+ 'high_entropy_archetypes': high_entropy
383
+ },
384
+ 'resonance_network_density': nx.density(resonance_net),
385
+ 'consciousness_coherence_index': self._calculate_coherence_index(),
386
+ 'predicted_evolution': self._predict_cultural_evolution()
387
+ }
388
+
389
+ return diagnostic
390
+
391
+ def _calculate_coherence_index(self) -> float:
392
+ """Calculate overall cultural coherence from archetypal stability"""
393
+ if not self.archetypal_db:
394
+ return 0.0
395
+
396
+ avg_preservation = np.mean([a.preservation_rate for a in self.archetypal_db.values()])
397
+ avg_coherence = np.mean([a.quantum_coherence for a in self.archetypal_db.values()])
398
+
399
+ return (avg_preservation * 0.6) + (avg_coherence * 0.4)
400
+
401
+ def _predict_cultural_evolution(self) -> List[Dict]:
402
+ """Predict near-term cultural evolution based on current pressures"""
403
+ predictions = []
404
+
405
+ pressure_vectors = ['digitization', 'ecological_crisis', 'quantum_awakening']
406
+
407
+ for pressure in pressure_vectors:
408
+ for archetype_name in list(self.archetypal_db.keys())[:3]: # Top 3 only for demo
409
+ mutations = self.mutation_engine.predict_mutation(
410
+ archetype_name, pressure, intensity=0.7
411
+ )
412
+ if mutations:
413
+ predictions.append({
414
+ 'pressure_vector': pressure,
415
+ 'archetype': archetype_name,
416
+ 'predicted_mutations': mutations,
417
+ 'timeframe': 'next_20_years'
418
+ })
419
+
420
+ return predictions
421
+
422
+ # Example instantiation with advanced archetypes
423
+ def create_advanced_archetypes():
424
+ """Create example archetypes with full neuro-symbolic specifications"""
425
+
426
+ # Solar Consciousness Archetype
427
+ solar_archetype = ArchetypalStrand(
428
+ name="Solar_Consciousness",
429
+ symbolic_form="Sunburst",
430
+ temporal_depth=6000,
431
+ spatial_distribution=0.95,
432
+ preservation_rate=0.9,
433
+ quantum_coherence=0.95
434
+ )
435
+
436
+ solar_quantum = QuantumSignature(
437
+ coherence=0.95,
438
+ entanglement=0.85,
439
+ qualia_vector=np.array([0.9, 0.8, 0.95, 0.7, 0.99]), # high visual, cognitive, spiritual
440
+ resonance_frequency=12.0 # Alpha resonance
441
+ )
442
+
443
+ solar_neural = NeuralCorrelate(
444
+ primary_regions=["PFC", "DMN", "Pineal_Region"],
445
+ frequency_band=ConsciousnessState.ALPHA,
446
+ cross_hemispheric_sync=0.9,
447
+ neuroplasticity_impact=0.8
448
+ )
449
+
450
+ solar_tech = ConsciousnessTechnology(
451
+ name="Solar_Illumination_Interface",
452
+ archetype=solar_archetype,
453
+ neural_correlate=solar_neural,
454
+ quantum_sig=solar_quantum
455
+ )
456
+
457
+ # Feminine Divine Archetype
458
+ feminine_archetype = ArchetypalStrand(
459
+ name="Feminine_Divine",
460
+ symbolic_form="Flowing_Vessels",
461
+ temporal_depth=8000,
462
+ spatial_distribution=0.85,
463
+ preservation_rate=0.7, # Some suppression in patriarchal eras
464
+ quantum_coherence=0.9
465
+ )
466
+
467
+ feminine_quantum = QuantumSignature(
468
+ coherence=0.88,
469
+ entanglement=0.92, # High connectivity
470
+ qualia_vector=np.array([0.7, 0.95, 0.8, 0.9, 0.85]), # high emotional, somatic
471
+ resonance_frequency=7.83 # Schumann resonance
472
+ )
473
+
474
+ feminine_neural = NeuralCorrelate(
475
+ primary_regions=["Whole_Brain", "Heart_Brain_Axis"],
476
+ frequency_band=ConsciousnessState.THETA,
477
+ cross_hemispheric_sync=0.95,
478
+ neuroplasticity_impact=0.9
479
+ )
480
+
481
+ feminine_tech = ConsciousnessTechnology(
482
+ name="Life_Flow_Resonator",
483
+ archetype=feminine_archetype,
484
+ neural_correlate=feminine_neural,
485
+ quantum_sig=feminine_quantum
486
+ )
487
+
488
+ return [
489
+ (solar_archetype, solar_tech),
490
+ (feminine_archetype, feminine_tech)
491
+ ]
492
+
493
+ # Demonstration
494
+ if __name__ == "__main__":
495
+ # Initialize the advanced engine
496
+ engine = UniversalArchetypalTransmissionEngine()
497
+
498
+ # Register advanced archetypes
499
+ for archetype, tech in create_advanced_archetypes():
500
+ engine.register_archetype(archetype, tech)
501
+
502
+ # Run comprehensive analysis
503
+ print("=== UNIVERSAL ARCHETYPAL TRANSMISSION ENGINE v9.0 ===")
504
+ print("\n1. ARCHEYPAL STRENGTH ANALYSIS:")
505
+ results = engine.prove_consciousness_architecture()
506
+ print(results.to_string(index=False))
507
+
508
+ print("\n2. CULTURAL DIAGNOSTIC:")
509
+ diagnostic = engine.generate_cultural_diagnostic()
510
+ for key, value in diagnostic.items():
511
+ if key != 'timestamp':
512
+ print(f"{key}: {value}")
513
+
514
+ print("\n3. CONSCIOUSNESS TECHNOLOGY ACTIVATION:")
515
+ solar_activation = engine.consciousness_tech["Solar_Consciousness"].activate(intensity=0.8)
516
+ print(f"Solar Activation: {solar_activation}")