Upload folder using huggingface_hub
Browse files
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
qwen3-vl-8b-instruct-abliterated-f16.gguf filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
qwen3-vl-8b-instruct-abliterated-q8-0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -11,7 +11,7 @@ tags:
|
|
| 11 |
- image-text-to-text
|
| 12 |
---
|
| 13 |
|
| 14 |
-
<!-- README Version: v1.
|
| 15 |
|
| 16 |
# Qwen3-VL-8B-Instruct (Abliterated)
|
| 17 |
|
|
@@ -40,37 +40,87 @@ This is an **abliterated** (uncensored) version of the Qwen3-VL-8B-Instruct mult
|
|
| 40 |
|
| 41 |
```
|
| 42 |
qwen3-vl-8b-instruct/
|
| 43 |
-
├── qwen3-vl-8b-instruct-abliterated.safetensors
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
```
|
| 46 |
|
| 47 |
-
**Total Repository Size**:
|
| 48 |
|
| 49 |
**File Details**:
|
|
|
|
| 50 |
- **qwen3-vl-8b-instruct-abliterated.safetensors**: Complete merged model in safetensors format
|
| 51 |
-
- Size:
|
| 52 |
- Precision: FP16 (half precision)
|
| 53 |
- Format: Single-file merged weights (not sharded)
|
| 54 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
## Hardware Requirements
|
| 57 |
|
| 58 |
-
###
|
|
|
|
| 59 |
- **VRAM**: 20 GB (FP16 inference)
|
| 60 |
- **RAM**: 32 GB system memory
|
| 61 |
- **Disk Space**: 20 GB free space
|
| 62 |
- **GPU**: NVIDIA GPU with Compute Capability 7.0+ (V100, RTX 20/30/40 series, A100, etc.)
|
| 63 |
|
| 64 |
-
|
| 65 |
- **VRAM**: 24 GB+ (RTX 4090, A6000, A100 for longer sequences)
|
| 66 |
- **RAM**: 64 GB system memory
|
| 67 |
- **Disk Space**: 30 GB+ (for model caching and optimization)
|
| 68 |
- **GPU**: NVIDIA RTX 4090, A100, or H100 for optimal performance
|
| 69 |
|
| 70 |
-
###
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
## Usage Examples
|
| 76 |
|
|
@@ -221,6 +271,148 @@ print("Model layers:", list(weights.keys())[:10]) # First 10 keys
|
|
| 221 |
print(f"Total parameters: {sum(w.numel() for w in weights.values()):,}")
|
| 222 |
```
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
## Model Specifications
|
| 225 |
|
| 226 |
### Architecture Details
|
|
@@ -518,7 +710,16 @@ processor = Qwen2VLProcessor(image_processor=image_processor, tokenizer=tokenize
|
|
| 518 |
|
| 519 |
## Changelog
|
| 520 |
|
| 521 |
-
**v1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
- Updated README with accurate file information
|
| 523 |
- Added abliteration details and safety warnings
|
| 524 |
- Documented single-file merged format
|
|
|
|
| 11 |
- image-text-to-text
|
| 12 |
---
|
| 13 |
|
| 14 |
+
<!-- README Version: v1.2 -->
|
| 15 |
|
| 16 |
# Qwen3-VL-8B-Instruct (Abliterated)
|
| 17 |
|
|
|
|
| 40 |
|
| 41 |
```
|
| 42 |
qwen3-vl-8b-instruct/
|
| 43 |
+
├── qwen3-vl-8b-instruct-abliterated.safetensors # Complete model weights (17 GB)
|
| 44 |
+
├── qwen3-vl-8b-instruct-abliterated-f16.gguf # FP16 GGUF format (16 GB)
|
| 45 |
+
├── qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf # Q4_K_M quantized (4.7 GB)
|
| 46 |
+
├── qwen3-vl-8b-instruct-abliterated-q8-0.gguf # Q8_0 quantized (8.2 GB)
|
| 47 |
+
└── README.md # This file
|
| 48 |
```
|
| 49 |
|
| 50 |
+
**Total Repository Size**: ~46 GB (multiple formats for different use cases)
|
| 51 |
|
| 52 |
**File Details**:
|
| 53 |
+
|
| 54 |
- **qwen3-vl-8b-instruct-abliterated.safetensors**: Complete merged model in safetensors format
|
| 55 |
+
- Size: 17 GB
|
| 56 |
- Precision: FP16 (half precision)
|
| 57 |
- Format: Single-file merged weights (not sharded)
|
| 58 |
+
- Use with: Transformers library, standard PyTorch inference
|
| 59 |
+
- Best for: GPU inference with 20GB+ VRAM
|
| 60 |
+
|
| 61 |
+
- **qwen3-vl-8b-instruct-abliterated-f16.gguf**: FP16 GGUF format
|
| 62 |
+
- Size: 16 GB
|
| 63 |
+
- Precision: FP16 (half precision)
|
| 64 |
+
- Format: GGUF (GPT-Generated Unified Format)
|
| 65 |
+
- Use with: llama.cpp, Ollama, LM Studio
|
| 66 |
+
- Best for: CPU/GPU inference with llama.cpp ecosystem
|
| 67 |
+
|
| 68 |
+
- **qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf**: Q4_K_M quantized GGUF
|
| 69 |
+
- Size: 4.7 GB
|
| 70 |
+
- Precision: 4-bit K-quant (medium quality)
|
| 71 |
+
- Format: GGUF quantized
|
| 72 |
+
- Use with: llama.cpp, Ollama, LM Studio
|
| 73 |
+
- Best for: Lower VRAM systems (8-12 GB), good quality/size balance
|
| 74 |
+
|
| 75 |
+
- **qwen3-vl-8b-instruct-abliterated-q8-0.gguf**: Q8_0 quantized GGUF
|
| 76 |
+
- Size: 8.2 GB
|
| 77 |
+
- Precision: 8-bit quantization
|
| 78 |
+
- Format: GGUF quantized
|
| 79 |
+
- Use with: llama.cpp, Ollama, LM Studio
|
| 80 |
+
- Best for: 12-16 GB VRAM, minimal quality loss from FP16
|
| 81 |
|
| 82 |
## Hardware Requirements
|
| 83 |
|
| 84 |
+
### SafeTensors Format (FP16)
|
| 85 |
+
**Minimum Requirements**:
|
| 86 |
- **VRAM**: 20 GB (FP16 inference)
|
| 87 |
- **RAM**: 32 GB system memory
|
| 88 |
- **Disk Space**: 20 GB free space
|
| 89 |
- **GPU**: NVIDIA GPU with Compute Capability 7.0+ (V100, RTX 20/30/40 series, A100, etc.)
|
| 90 |
|
| 91 |
+
**Recommended Requirements**:
|
| 92 |
- **VRAM**: 24 GB+ (RTX 4090, A6000, A100 for longer sequences)
|
| 93 |
- **RAM**: 64 GB system memory
|
| 94 |
- **Disk Space**: 30 GB+ (for model caching and optimization)
|
| 95 |
- **GPU**: NVIDIA RTX 4090, A100, or H100 for optimal performance
|
| 96 |
|
| 97 |
+
### GGUF Formats (Multiple Options)
|
| 98 |
+
|
| 99 |
+
**F16 GGUF** (qwen3-vl-8b-instruct-abliterated-f16.gguf):
|
| 100 |
+
- **VRAM**: 18-20 GB GPU VRAM recommended
|
| 101 |
+
- **RAM**: 32 GB for GPU offloading, 64 GB for CPU inference
|
| 102 |
+
- **Disk Space**: 20 GB
|
| 103 |
+
- **Use Case**: GPU inference with llama.cpp ecosystem
|
| 104 |
+
|
| 105 |
+
**Q8_0 GGUF** (qwen3-vl-8b-instruct-abliterated-q8-0.gguf):
|
| 106 |
+
- **VRAM**: 12-16 GB GPU VRAM
|
| 107 |
+
- **RAM**: 16 GB for GPU offloading, 32 GB for CPU inference
|
| 108 |
+
- **Disk Space**: 10 GB
|
| 109 |
+
- **Quality**: Minimal quality loss from FP16, excellent balance
|
| 110 |
+
- **Use Case**: Mid-range GPUs (RTX 3060 12GB, RTX 4060 Ti 16GB, etc.)
|
| 111 |
+
|
| 112 |
+
**Q4_K_M GGUF** (qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf):
|
| 113 |
+
- **VRAM**: 8-12 GB GPU VRAM
|
| 114 |
+
- **RAM**: 8 GB for GPU offloading, 16 GB for CPU inference
|
| 115 |
+
- **Disk Space**: 6 GB
|
| 116 |
+
- **Quality**: Good quality/size balance, suitable for most tasks
|
| 117 |
+
- **Use Case**: Consumer GPUs (RTX 3060, RTX 4060, etc.)
|
| 118 |
+
|
| 119 |
+
### CPU-Only Inference (GGUF formats)
|
| 120 |
+
- **RAM**: 32-64 GB system memory
|
| 121 |
+
- **CPU**: Modern CPU with AVX2 support (Intel Core i5/i7/i9, AMD Ryzen)
|
| 122 |
+
- **Performance**: Much slower than GPU, but functional
|
| 123 |
+
- **Recommended**: Q4_K_M format for best performance/quality balance
|
| 124 |
|
| 125 |
## Usage Examples
|
| 126 |
|
|
|
|
| 271 |
print(f"Total parameters: {sum(w.numel() for w in weights.values()):,}")
|
| 272 |
```
|
| 273 |
|
| 274 |
+
## GGUF Format Usage
|
| 275 |
+
|
| 276 |
+
The GGUF formats are designed for use with llama.cpp, Ollama, LM Studio, and other GGUF-compatible inference engines. These formats are optimized for flexible deployment across CPU and GPU systems.
|
| 277 |
+
|
| 278 |
+
### Using with llama.cpp
|
| 279 |
+
|
| 280 |
+
**Installation**:
|
| 281 |
+
```bash
|
| 282 |
+
git clone https://github.com/ggerganov/llama.cpp
|
| 283 |
+
cd llama.cpp
|
| 284 |
+
make
|
| 285 |
+
```
|
| 286 |
+
|
| 287 |
+
**Basic Inference** (Q4_K_M for best balance):
|
| 288 |
+
```bash
|
| 289 |
+
./main -m "E:\\huggingface\\qwen3-vl-8b-instruct\\qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf" \
|
| 290 |
+
--image "path/to/image.jpg" \
|
| 291 |
+
-p "Describe this image in detail." \
|
| 292 |
+
-n 512 \
|
| 293 |
+
--temp 0.7 \
|
| 294 |
+
--top-p 0.9
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
+
**GPU Acceleration** (offload layers to GPU):
|
| 298 |
+
```bash
|
| 299 |
+
./main -m "E:\\huggingface\\qwen3-vl-8b-instruct\\qwen3-vl-8b-instruct-abliterated-q8-0.gguf" \
|
| 300 |
+
--image "path/to/image.jpg" \
|
| 301 |
+
-p "What objects are in this image?" \
|
| 302 |
+
-n 512 \
|
| 303 |
+
--n-gpu-layers 35 \
|
| 304 |
+
--temp 0.7
|
| 305 |
+
```
|
| 306 |
+
|
| 307 |
+
**CPU-Only Inference** (optimized threading):
|
| 308 |
+
```bash
|
| 309 |
+
./main -m "E:\\huggingface\\qwen3-vl-8b-instruct\\qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf" \
|
| 310 |
+
--image "path/to/image.jpg" \
|
| 311 |
+
-p "Analyze this chart." \
|
| 312 |
+
-n 512 \
|
| 313 |
+
--threads 8
|
| 314 |
+
```
|
| 315 |
+
|
| 316 |
+
### Using with Ollama
|
| 317 |
+
|
| 318 |
+
**Create Modelfile**:
|
| 319 |
+
```dockerfile
|
| 320 |
+
FROM E:\huggingface\qwen3-vl-8b-instruct\qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf
|
| 321 |
+
|
| 322 |
+
PARAMETER temperature 0.7
|
| 323 |
+
PARAMETER top_p 0.9
|
| 324 |
+
PARAMETER top_k 40
|
| 325 |
+
|
| 326 |
+
SYSTEM """You are an uncensored vision-language AI assistant capable of analyzing images and answering questions without content filtering."""
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
**Create and run model**:
|
| 330 |
+
```bash
|
| 331 |
+
ollama create qwen3-vl-abliterated -f ./Modelfile
|
| 332 |
+
ollama run qwen3-vl-abliterated
|
| 333 |
+
```
|
| 334 |
+
|
| 335 |
+
**Interactive use**:
|
| 336 |
+
```bash
|
| 337 |
+
>>> What's in this image? /path/to/image.jpg
|
| 338 |
+
```
|
| 339 |
+
|
| 340 |
+
### Using with LM Studio
|
| 341 |
+
|
| 342 |
+
1. Open LM Studio
|
| 343 |
+
2. Go to "Local Models" → "Import Model"
|
| 344 |
+
3. Select one of the GGUF files:
|
| 345 |
+
- Use Q4_K_M for best performance on consumer hardware
|
| 346 |
+
- Use Q8_0 for better quality with more VRAM
|
| 347 |
+
- Use F16 for maximum quality
|
| 348 |
+
4. Load the model and configure:
|
| 349 |
+
- Context Length: 32768
|
| 350 |
+
- GPU Offload: Adjust based on your VRAM
|
| 351 |
+
- Temperature: 0.7 (adjust for your use case)
|
| 352 |
+
5. Use the image upload feature to analyze images
|
| 353 |
+
|
| 354 |
+
### Python with llama-cpp-python
|
| 355 |
+
|
| 356 |
+
**Installation**:
|
| 357 |
+
```bash
|
| 358 |
+
pip install llama-cpp-python
|
| 359 |
+
```
|
| 360 |
+
|
| 361 |
+
**Basic Usage**:
|
| 362 |
+
```python
|
| 363 |
+
from llama_cpp import Llama
|
| 364 |
+
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
| 365 |
+
|
| 366 |
+
# Initialize chat handler for vision model
|
| 367 |
+
chat_handler = Llava15ChatHandler(clip_model_path="path/to/clip/model")
|
| 368 |
+
|
| 369 |
+
# Load model
|
| 370 |
+
llm = Llama(
|
| 371 |
+
model_path="E:\\huggingface\\qwen3-vl-8b-instruct\\qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf",
|
| 372 |
+
chat_handler=chat_handler,
|
| 373 |
+
n_ctx=32768,
|
| 374 |
+
n_gpu_layers=35, # Adjust based on VRAM
|
| 375 |
+
verbose=False
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
# Analyze image
|
| 379 |
+
response = llm.create_chat_completion(
|
| 380 |
+
messages=[
|
| 381 |
+
{
|
| 382 |
+
"role": "user",
|
| 383 |
+
"content": [
|
| 384 |
+
{"type": "image_url", "image_url": {"url": "file:///path/to/image.jpg"}},
|
| 385 |
+
{"type": "text", "text": "What is in this image?"}
|
| 386 |
+
]
|
| 387 |
+
}
|
| 388 |
+
],
|
| 389 |
+
temperature=0.7,
|
| 390 |
+
max_tokens=512
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
print(response["choices"][0]["message"]["content"])
|
| 394 |
+
```
|
| 395 |
+
|
| 396 |
+
### Format Selection Guide
|
| 397 |
+
|
| 398 |
+
**Choose Q4_K_M** if:
|
| 399 |
+
- You have 8-12 GB VRAM
|
| 400 |
+
- You want fast inference with good quality
|
| 401 |
+
- Storage space is a concern
|
| 402 |
+
- Most consumer hardware scenarios
|
| 403 |
+
|
| 404 |
+
**Choose Q8_0** if:
|
| 405 |
+
- You have 12-16 GB VRAM
|
| 406 |
+
- You want minimal quality loss from FP16
|
| 407 |
+
- You can spare the extra storage
|
| 408 |
+
- Professional or high-quality output needs
|
| 409 |
+
|
| 410 |
+
**Choose F16 GGUF** if:
|
| 411 |
+
- You have 20+ GB VRAM
|
| 412 |
+
- You want maximum quality
|
| 413 |
+
- You prefer GGUF ecosystem over PyTorch
|
| 414 |
+
- You need llama.cpp compatibility with full precision
|
| 415 |
+
|
| 416 |
## Model Specifications
|
| 417 |
|
| 418 |
### Architecture Details
|
|
|
|
| 710 |
|
| 711 |
## Changelog
|
| 712 |
|
| 713 |
+
**v1.2** (Current - November 2025)
|
| 714 |
+
- Added GGUF format files (F16, Q8_0, Q4_K_M)
|
| 715 |
+
- Comprehensive GGUF usage documentation (llama.cpp, Ollama, LM Studio)
|
| 716 |
+
- Detailed hardware requirements for each format
|
| 717 |
+
- Format selection guide for different use cases
|
| 718 |
+
- Updated total repository size to ~46 GB
|
| 719 |
+
- Added Python llama-cpp-python examples
|
| 720 |
+
- Enhanced deployment flexibility across CPU/GPU systems
|
| 721 |
+
|
| 722 |
+
**v1.1**
|
| 723 |
- Updated README with accurate file information
|
| 724 |
- Added abliteration details and safety warnings
|
| 725 |
- Documented single-file merged format
|
qwen3-vl-8b-instruct-abliterated-f16.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:198b11e5bf72366e17c26fd2ef7acffb7b521e0520b5d888adb3caf7ba1df5ae
|
| 3 |
+
size 16388044928
|
qwen3-vl-8b-instruct-abliterated-q4-k-m.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a12b15fc5631cd42bd67739d8bbb5ac2e18b958c879d16e6bcd3d86879f0117d
|
| 3 |
+
size 5027784832
|
qwen3-vl-8b-instruct-abliterated-q8-0.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39579e349e291e70a6391eebfb8a93046d5798e018df0a029cc6408c35ecbb80
|
| 3 |
+
size 8709519488
|