Prot2Text-V2-11B-Instruct-hf / modeling_prot2text2.py
xiao-fei's picture
register model & update readme
f7d6d00
from typing import Dict, Optional, Tuple, Union
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from transformers import EsmConfig, LlamaConfig, PretrainedConfig
from transformers import EsmModel, LlamaForCausalLM, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import Cache, GenerateOutput
class ModalityAdapterConfig(PretrainedConfig):
model_type = "modality_adapter"
def __init__(
self,
input_dim: int,
intermediate_dim: int,
output_dim: int,
dropout_rate: float = 0.3,
**kwargs
):
super().__init__(**kwargs)
self.input_dim = input_dim
self.intermediate_dim = intermediate_dim
self.output_dim = output_dim
self.dropout_rate = dropout_rate
class Esm2LlamaInstructConfig(PretrainedConfig):
model_type = "esm2llama_instruct"
def __init__(
self,
# model components
esm_config: Optional[Union[EsmConfig, Dict]] = None,
adapter_config: Optional[Union[ModalityAdapterConfig, Dict]] = None,
llama_config: Optional[Union[LlamaConfig, Dict]] = None,
# standalone attributes
placeholder_id: int = 128003,
**kwargs
):
super().__init__(**kwargs)
if isinstance(esm_config, dict):
self.esm_config = EsmConfig(**esm_config)
else:
self.esm_config = esm_config
if isinstance(llama_config, dict):
self.llama_config = LlamaConfig(**llama_config)
else:
self.llama_config = llama_config
if isinstance(adapter_config, dict):
self.adapter_config = ModalityAdapterConfig(**adapter_config)
else:
self.adapter_config = adapter_config
self.placeholder_id = placeholder_id
class ModalityAdapter(PreTrainedModel):
config_class = ModalityAdapterConfig
def __init__(self, config: ModalityAdapterConfig):
super().__init__(config)
self.config = config
self.fc1 = torch.nn.Linear(config.input_dim, config.intermediate_dim)
self.fc2 = torch.nn.Linear(config.intermediate_dim, config.output_dim)
self.activation = torch.nn.GELU()
self.ln1 = torch.nn.LayerNorm(normalized_shape=config.intermediate_dim) # DEPRECATED
self.ln2 = torch.nn.LayerNorm(normalized_shape=config.output_dim) # DEPRECATED
self.dropout = torch.nn.Dropout(p=config.dropout_rate)
self.post_init() # initialize weights and apply final processing
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
# input: (bsz, seq_len, input_dim)
hidden_states = self.activation(self.fc1(hidden_states))
hidden_states = self.dropout(hidden_states)
# interm: (bsz, seq_len, interm_dim)
hidden_states = self.activation(self.fc2(hidden_states))
hidden_states = self.dropout(hidden_states)
hidden_states = torch.nn.functional.normalize(hidden_states, p=2, dim=-1)
return hidden_states # (bsz, seq_len, output_dim)
class Esm2LlamaInstructForCausalLM(PreTrainedModel):
"""
Esm2LlamaInstructForCausalLM model for protein function prediction.
Similar to `EncoderDecoderModel` but with more complicated architecture.
Initialize with either a configuration OR all three components.
`kwargs` can override standalone attributes in `Esm2LlamaInstructConfig`.
"""
config_class = Esm2LlamaInstructConfig
def __init__(
self,
config: Optional[Esm2LlamaInstructConfig] = None,
esm_encoder: Optional[EsmModel] = None,
adapter: Optional[ModalityAdapter] = None,
llama_decoder: Optional[LlamaForCausalLM] = None,
**kwargs
):
if config is not None: # components ignored if config is provided
super().__init__(config)
self.esm_encoder = EsmModel(
config.esm_config,
add_pooling_layer=False
)
self.adapter = ModalityAdapter(config.adapter_config)
self.llama_decoder = LlamaForCausalLM(config.llama_config)
else:
config = Esm2LlamaInstructConfig(
esm_config=esm_encoder.config,
adapter_config=adapter.config,
llama_config=llama_decoder.config,
**kwargs # override standalone attributes
)
super().__init__(config)
self.esm_encoder = esm_encoder
self.adapter = adapter
self.llama_decoder = llama_decoder
def prepare_decoder_inputs(
self,
input_ids: torch.LongTensor,
encoder_hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
):
"""
Embed and replace placeholder in `input_ids` by encoder hidden states.
`input_ids` must be passed to locate placeholder for replacement.
"""
# preparation
batch_size, seq_len = input_ids.size()
_, encoder_seq_len, _ = encoder_hidden_states.size()
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_len),
dtype=torch.long,
device=input_ids.device
)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
(batch_size, encoder_seq_len),
dtype=torch.long,
device=encoder_hidden_states.device
)
inputs_embeds = self.llama_decoder.get_input_embeddings()(input_ids)
# replacement
placeholder_mask = input_ids == self.config.placeholder_id
encoder_mask = encoder_attention_mask.bool()
inputs_embeds[placeholder_mask] = encoder_hidden_states[encoder_mask]
return inputs_embeds, attention_mask
def forward(
self,
# chat template text inputs
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
labels: Optional[torch.LongTensor] = None,
# protein amino-acid sequence inputs
protein_input_ids: Optional[torch.LongTensor] = None,
protein_attention_mask: Optional[torch.LongTensor] = None,
protein_position_ids: Optional[torch.LongTensor] = None,
protein_head_mask: Optional[torch.LongTensor] = None,
protein_inputs_embeds: Optional[torch.FloatTensor] = None,
# behavior control arguments
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_encoder_outputs: bool = False,
return_adapter_outputs: bool = False,
return_decoder_inputs: bool = False,
cache_position: Optional[torch.LongTensor] = None
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Compute encoder and adapter outputs, then pass to decoder.
`input_ids` is expected to be [prompt + description] in teacher-forcing
scenario and [prompt] only in first iteration of inference (with
return_decoder_inputs=True).
Attention: possible concatenation of the mask and labels should be
handled before calling this method.
`inputs_embeds` not allowed due to placeholder replacement scheme.
"""
# esm_encoder forward
encoder_output = self.esm_encoder(
input_ids=protein_input_ids,
attention_mask=protein_attention_mask,
position_ids=protein_position_ids,
head_mask=protein_head_mask,
inputs_embeds=protein_inputs_embeds,
use_cache=False, # because config.esm_config.is_decoder=False
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
encoder_hidden_states = encoder_output[0]
encoder_attention_mask = protein_attention_mask
if return_encoder_outputs:
return encoder_output
# adapter forward
adapter_output = self.adapter(encoder_hidden_states)
if return_adapter_outputs:
return adapter_output, encoder_attention_mask
# decoder input preparation
inputs_embeds, attention_mask = self.prepare_decoder_inputs(
input_ids=input_ids,
encoder_hidden_states=adapter_output,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
)
if return_decoder_inputs:
return inputs_embeds, attention_mask
# llama_decoder forward
return self.llama_decoder.forward(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position
)
def generate(
self,
inputs: torch.LongTensor, # alias of `input_ids`
attention_mask: Optional[torch.LongTensor] = None,
protein_input_ids: Optional[torch.LongTensor] = None,
protein_attention_mask: Optional[torch.LongTensor] = None,
protein_inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
) -> Union[GenerateOutput, torch.LongTensor]:
"""
Do inference based on given input prompt.
`inputs` is expected to be [prompt] only.
Output will not keep the input prompt due to input in form of embeds.
Generation behavior can be controlled by `args` and `kwargs`, read
`GenerationMixin.generate` for more info.
"""
# get decoder inputs
prompt_inputs_embeds, prompt_attention_mask = self(
input_ids=inputs,
attention_mask=attention_mask,
protein_input_ids=protein_input_ids,
protein_attention_mask=protein_attention_mask,
protein_inputs_embeds=protein_inputs_embeds,
use_cache=False,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
return_decoder_inputs=True
)
# do generate on llama_decoder
return self.llama_decoder.generate(
inputs_embeds=prompt_inputs_embeds,
attention_mask=prompt_attention_mask,
**kwargs
)
def gradient_checkpointing_enable(self):
"""
Enable gradient checkpointing for all submodules that support it.
Attention! Model need to be in train mode before calling this method.
"""
if hasattr(self.esm_encoder, "gradient_checkpointing_enable"):
self.esm_encoder.gradient_checkpointing_enable()
if hasattr(self.llama_decoder, "gradient_checkpointing_enable"):
self.llama_decoder.gradient_checkpointing_enable()
# simple adapter no need to implement gradient checkpointing
def gradient_checkpointing_disable(self):
if hasattr(self.esm_encoder, "gradient_checkpointing_disable"):
self.esm_encoder.gradient_checkpointing_disable()
if hasattr(self.llama_decoder, "gradient_checkpointing_disable"):
self.llama_decoder.gradient_checkpointing_disable()
AutoConfig.register("esm2llama_instruct", Esm2LlamaInstructConfig)
AutoModelForCausalLM.register(Esm2LlamaInstructConfig, Esm2LlamaInstructForCausalLM)