Upload 11 files
Browse files- LMConfig.py +83 -0
- added_tokens.json +24 -0
- config.json +40 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model.py +480 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
LMConfig.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LMConfig(PretrainedConfig):
|
| 6 |
+
model_type = "nanochat"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
dim: int = 512,
|
| 11 |
+
n_layers: int = 8,
|
| 12 |
+
tie_word_embeddings: bool = True,
|
| 13 |
+
###########################################
|
| 14 |
+
attention:str='GQA',
|
| 15 |
+
#GQA
|
| 16 |
+
n_heads: int = 14,
|
| 17 |
+
n_kv_heads: int = 2,
|
| 18 |
+
#MLA
|
| 19 |
+
q_lora_rank: int=0,
|
| 20 |
+
kv_lora_rank: int=512,
|
| 21 |
+
qk_nope_head_dim: int=64,
|
| 22 |
+
qk_rope_head_dim:int=64,
|
| 23 |
+
v_head_dim:int=64,
|
| 24 |
+
#############################################
|
| 25 |
+
vocab_size: int = 151650,
|
| 26 |
+
# vocab_size: int = 6400,
|
| 27 |
+
hidden_dim: int = None,
|
| 28 |
+
multiple_of: int = 64,
|
| 29 |
+
norm_eps: float = 1e-5,
|
| 30 |
+
max_seq_len: int = 8192,
|
| 31 |
+
rope_theta: int = 1e6,
|
| 32 |
+
dropout: float = 0.0,
|
| 33 |
+
flash_attn: bool = True,
|
| 34 |
+
####################################################
|
| 35 |
+
# Here are the specific configurations of MOE
|
| 36 |
+
# When use_moe is false, the following is invalid
|
| 37 |
+
####################################################
|
| 38 |
+
use_moe: bool = False,
|
| 39 |
+
####################################################
|
| 40 |
+
num_experts_per_tok: int = 2,
|
| 41 |
+
n_routed_experts: int = 4,
|
| 42 |
+
n_shared_experts: bool = True,
|
| 43 |
+
scoring_func: str = 'softmax',
|
| 44 |
+
aux_loss_alpha: float = 0.1,
|
| 45 |
+
seq_aux: bool = True,
|
| 46 |
+
norm_topk_prob: bool = True,
|
| 47 |
+
**kwargs,
|
| 48 |
+
):
|
| 49 |
+
self.dim = dim
|
| 50 |
+
self.n_layers = n_layers
|
| 51 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 52 |
+
self.vocab_size = vocab_size
|
| 53 |
+
self.hidden_dim = hidden_dim
|
| 54 |
+
self.multiple_of = multiple_of
|
| 55 |
+
self.norm_eps = norm_eps
|
| 56 |
+
self.max_seq_len = max_seq_len
|
| 57 |
+
self.rope_theta = rope_theta
|
| 58 |
+
self.dropout = dropout
|
| 59 |
+
self.flash_attn = flash_attn
|
| 60 |
+
#####################################################
|
| 61 |
+
self.attention=attention
|
| 62 |
+
#GQA
|
| 63 |
+
self.n_heads = n_heads
|
| 64 |
+
self.n_kv_heads = n_kv_heads
|
| 65 |
+
#MLA
|
| 66 |
+
self.q_lora_rank = q_lora_rank
|
| 67 |
+
self.kv_lora_rank = kv_lora_rank
|
| 68 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
| 69 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
| 70 |
+
self.v_head_dim = v_head_dim
|
| 71 |
+
####################################################
|
| 72 |
+
# Here are the specific configurations of MOE
|
| 73 |
+
# When use_moe is false, the following is invalid
|
| 74 |
+
####################################################
|
| 75 |
+
self.use_moe = use_moe
|
| 76 |
+
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
|
| 77 |
+
self.n_routed_experts = n_routed_experts # 总的专家数量
|
| 78 |
+
self.n_shared_experts = n_shared_experts # 共享专家
|
| 79 |
+
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
|
| 80 |
+
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
|
| 81 |
+
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
|
| 82 |
+
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
|
| 83 |
+
super().__init__(**kwargs)
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "out_sft",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"NanoChatLM"
|
| 5 |
+
],
|
| 6 |
+
"attention": "GQA",
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "LMConfig.LMConfig",
|
| 9 |
+
"AutoModel": "model.NanoChatLM",
|
| 10 |
+
"AutoModelForCausalLM": "model.NanoChatLM"
|
| 11 |
+
},
|
| 12 |
+
"aux_loss_alpha": 0.1,
|
| 13 |
+
"dim": 896,
|
| 14 |
+
"dropout": 0.0,
|
| 15 |
+
"flash_attn": true,
|
| 16 |
+
"hidden_dim": 2432,
|
| 17 |
+
"kv_lora_rank": 512,
|
| 18 |
+
"max_seq_len": 512,
|
| 19 |
+
"model_type": "nanochat",
|
| 20 |
+
"multiple_of": 64,
|
| 21 |
+
"n_heads": 14,
|
| 22 |
+
"n_kv_heads": 2,
|
| 23 |
+
"n_layers": 24,
|
| 24 |
+
"n_routed_experts": 4,
|
| 25 |
+
"n_shared_experts": true,
|
| 26 |
+
"norm_eps": 1e-05,
|
| 27 |
+
"norm_topk_prob": true,
|
| 28 |
+
"num_experts_per_tok": 2,
|
| 29 |
+
"q_lora_rank": 0,
|
| 30 |
+
"qk_nope_head_dim": 64,
|
| 31 |
+
"qk_rope_head_dim": 64,
|
| 32 |
+
"rope_theta": 1000000.0,
|
| 33 |
+
"scoring_func": "softmax",
|
| 34 |
+
"seq_aux": true,
|
| 35 |
+
"torch_dtype": "float32",
|
| 36 |
+
"transformers_version": "4.42.4",
|
| 37 |
+
"use_moe": false,
|
| 38 |
+
"v_head_dim": 64,
|
| 39 |
+
"vocab_size": 151650
|
| 40 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.42.4"
|
| 4 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.py
ADDED
|
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import struct
|
| 3 |
+
import inspect
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
from .LMConfig import LMConfig
|
| 7 |
+
from typing import Any, Optional, Tuple, List
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch import nn
|
| 12 |
+
from transformers import PreTrainedModel
|
| 13 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 14 |
+
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class RMSNorm(torch.nn.Module):
|
| 18 |
+
def __init__(self, dim: int, eps: float):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.eps = eps
|
| 21 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) ).type_as(x)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def precompute_pos_cis(dim: int, end: int, theta: float = 1e4):
|
| 28 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 29 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
| 30 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
| 31 |
+
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 32 |
+
return pos_cis
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def apply_rotary_emb(xq, xk, pos_cis):
|
| 36 |
+
def unite_shape(pos_cis, x):
|
| 37 |
+
ndim = x.ndim
|
| 38 |
+
assert 0 <= 1 < ndim
|
| 39 |
+
assert pos_cis.shape == (x.shape[1], x.shape[-1])
|
| 40 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
| 41 |
+
return pos_cis.view(*shape)
|
| 42 |
+
|
| 43 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
| 44 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
| 45 |
+
pos_cis = unite_shape(pos_cis, xq_)
|
| 46 |
+
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
|
| 47 |
+
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
| 48 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 52 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
| 53 |
+
bs, slen, n_kv_heads, head_dim = x.shape
|
| 54 |
+
if n_rep == 1:
|
| 55 |
+
return x
|
| 56 |
+
return (
|
| 57 |
+
x[:, :, :, None, :]
|
| 58 |
+
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
| 59 |
+
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class GQA(nn.Module):
|
| 64 |
+
def __init__(self, args: LMConfig):
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
| 67 |
+
assert args.n_heads % self.n_kv_heads == 0
|
| 68 |
+
self.n_local_heads = args.n_heads
|
| 69 |
+
self.n_local_kv_heads = self.n_kv_heads
|
| 70 |
+
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 71 |
+
self.head_dim = args.dim // args.n_heads
|
| 72 |
+
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=True)
|
| 73 |
+
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=True)
|
| 74 |
+
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=True)
|
| 75 |
+
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
| 76 |
+
self.attn_dropout = nn.Dropout(args.dropout)
|
| 77 |
+
self.resid_dropout = nn.Dropout(args.dropout)
|
| 78 |
+
self.dropout = args.dropout
|
| 79 |
+
self.softmax_scale=self.head_dim ** -0.5
|
| 80 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
| 81 |
+
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
| 82 |
+
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
| 83 |
+
mask = torch.triu(mask, diagonal=1)
|
| 84 |
+
self.register_buffer("mask", mask, persistent=False)
|
| 85 |
+
|
| 86 |
+
def forward(self,
|
| 87 |
+
x: torch.Tensor,
|
| 88 |
+
pos_cis: torch.Tensor,
|
| 89 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 90 |
+
use_cache=False):
|
| 91 |
+
bsz, seq_len, _ = x.shape
|
| 92 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
| 93 |
+
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
| 94 |
+
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
| 95 |
+
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
| 96 |
+
|
| 97 |
+
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
| 98 |
+
# kv_cache实现
|
| 99 |
+
if past_key_value is not None:
|
| 100 |
+
xk = torch.cat([past_key_value[0], xk], dim=1)
|
| 101 |
+
xv = torch.cat([past_key_value[1], xv], dim=1)
|
| 102 |
+
past_kv = (xk, xv) if use_cache else None
|
| 103 |
+
|
| 104 |
+
xq, xk, xv = (
|
| 105 |
+
xq.transpose(1, 2),
|
| 106 |
+
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
| 107 |
+
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
| 108 |
+
)
|
| 109 |
+
if self.flash and seq_len != 1:
|
| 110 |
+
dropout_p = self.dropout if self.training else 0.0
|
| 111 |
+
output = F.scaled_dot_product_attention(
|
| 112 |
+
xq, xk, xv,
|
| 113 |
+
attn_mask=None,
|
| 114 |
+
dropout_p=dropout_p,
|
| 115 |
+
is_causal=True
|
| 116 |
+
)
|
| 117 |
+
# output =flash_attn_func(
|
| 118 |
+
# xq, xk, xv,
|
| 119 |
+
# dropout_p=dropout_p,
|
| 120 |
+
# softmax_scale=self.softmax_scale,
|
| 121 |
+
# causal=True
|
| 122 |
+
# )
|
| 123 |
+
else:
|
| 124 |
+
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 125 |
+
scores += self.mask[:, :, :seq_len, :seq_len]
|
| 126 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
| 127 |
+
scores = self.attn_dropout(scores)
|
| 128 |
+
output = scores @ xv
|
| 129 |
+
|
| 130 |
+
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
| 131 |
+
output = self.resid_dropout(self.wo(output))
|
| 132 |
+
return output, past_kv
|
| 133 |
+
|
| 134 |
+
class MLA(nn.Module):
|
| 135 |
+
"""
|
| 136 |
+
Multi-Headed Attention Layer (MLA).
|
| 137 |
+
|
| 138 |
+
Attributes:
|
| 139 |
+
dim (int): Dimensionality of the input features.
|
| 140 |
+
n_heads (int): Number of attention heads.
|
| 141 |
+
n_local_heads (int): Number of local attention heads for distributed systems.
|
| 142 |
+
q_lora_rank (int): Rank for low-rank query projection.
|
| 143 |
+
kv_lora_rank (int): Rank for low-rank key/value projection.
|
| 144 |
+
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
|
| 145 |
+
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
|
| 146 |
+
qk_head_dim (int): Total dimensionality of query/key projections.
|
| 147 |
+
v_head_dim (int): Dimensionality of value projections.
|
| 148 |
+
softmax_scale (float): Scaling factor for softmax in attention computation.
|
| 149 |
+
"""
|
| 150 |
+
def __init__(self, args: LMConfig):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.dim = args.dim
|
| 153 |
+
self.n_heads = args.n_heads
|
| 154 |
+
self.n_local_heads = args.n_heads
|
| 155 |
+
self.q_lora_rank = args.q_lora_rank
|
| 156 |
+
self.kv_lora_rank = args.kv_lora_rank
|
| 157 |
+
self.qk_nope_head_dim = args.qk_nope_head_dim
|
| 158 |
+
self.qk_rope_head_dim = args.qk_rope_head_dim
|
| 159 |
+
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
|
| 160 |
+
self.v_head_dim = args.v_head_dim
|
| 161 |
+
|
| 162 |
+
if self.q_lora_rank == 0:
|
| 163 |
+
self.wq = nn.Linear(self.dim, self.n_heads * self.qk_head_dim,bias=False)
|
| 164 |
+
else:
|
| 165 |
+
self.wq_a = nn.Linear(self.dim, self.q_lora_rank)
|
| 166 |
+
self.q_norm = RMSNorm(self.q_lora_rank,eps=args.norm_eps)
|
| 167 |
+
self.wq_b = nn.Linear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
|
| 168 |
+
self.wkv_a = nn.Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
|
| 169 |
+
self.kv_norm = RMSNorm(self.kv_lora_rank,eps=args.norm_eps)
|
| 170 |
+
self.wkv_b = nn.Linear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
|
| 171 |
+
self.wo = nn.Linear(self.n_heads * self.v_head_dim, self.dim)
|
| 172 |
+
self.softmax_scale = self.qk_head_dim ** -0.5
|
| 173 |
+
mask = torch.full((args.max_seq_len, args.max_seq_len), float("-inf")).triu_(1)
|
| 174 |
+
self.register_buffer("mask", mask, persistent=False)
|
| 175 |
+
|
| 176 |
+
def forward(self,
|
| 177 |
+
x: torch.Tensor,
|
| 178 |
+
freqs_cis: torch.Tensor,
|
| 179 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 180 |
+
use_cache=False):
|
| 181 |
+
"""
|
| 182 |
+
Forward pass for the Multi-Headed Attention Layer (MLA).
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
|
| 186 |
+
start_pos (int): Starting position in the sequence for caching.
|
| 187 |
+
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
| 188 |
+
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
torch.Tensor: Output tensor with the same shape as the input.
|
| 192 |
+
"""
|
| 193 |
+
bsz, seqlen, _ = x.size()
|
| 194 |
+
|
| 195 |
+
if self.q_lora_rank == 0:
|
| 196 |
+
q = self.wq(x)#x*Wqc
|
| 197 |
+
else:
|
| 198 |
+
q = self.wq_b(self.q_norm(self.wq_a(x)))#x*Wc'*Wqc
|
| 199 |
+
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
|
| 200 |
+
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
| 201 |
+
|
| 202 |
+
kv = self.wkv_a(x)#x*Wc
|
| 203 |
+
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
| 204 |
+
q_pe,k_pe=apply_rotary_emb(q_pe,k_pe.unsqueeze(2), freqs_cis)
|
| 205 |
+
|
| 206 |
+
wkv_b = self.wkv_b.weight
|
| 207 |
+
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
|
| 208 |
+
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
|
| 209 |
+
kv=self.kv_norm(kv)
|
| 210 |
+
k_pe=k_pe.squeeze(2)
|
| 211 |
+
if past_key_value is not None:
|
| 212 |
+
kv=torch.cat([past_key_value[0], kv], dim=1)
|
| 213 |
+
k_pe=torch.cat([past_key_value[1], k_pe], dim=1)
|
| 214 |
+
past_kv = (kv, k_pe) if use_cache else None
|
| 215 |
+
scores = (torch.einsum("bshc,btc->bsht", q_nope, kv) +
|
| 216 |
+
torch.einsum("bshr,btr->bsht", q_pe, k_pe)) * self.softmax_scale
|
| 217 |
+
mask=self.mask.unsqueeze(1)
|
| 218 |
+
scores += mask[:seqlen,:,:seqlen]
|
| 219 |
+
scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
|
| 220 |
+
|
| 221 |
+
x = torch.einsum("bsht,btc->bshc", scores, kv)
|
| 222 |
+
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
|
| 223 |
+
x = self.wo(x.flatten(2))
|
| 224 |
+
|
| 225 |
+
return x,past_kv
|
| 226 |
+
|
| 227 |
+
class FeedForward(nn.Module):
|
| 228 |
+
def __init__(self, config: LMConfig):
|
| 229 |
+
super().__init__()
|
| 230 |
+
if config.hidden_dim is None:
|
| 231 |
+
hidden_dim = 4 * config.dim
|
| 232 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 233 |
+
config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
|
| 234 |
+
self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False)
|
| 235 |
+
self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False)
|
| 236 |
+
self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False)
|
| 237 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class MoEGate(nn.Module):
|
| 244 |
+
def __init__(self, config: LMConfig):
|
| 245 |
+
super().__init__()
|
| 246 |
+
self.config = config
|
| 247 |
+
self.top_k = config.num_experts_per_tok
|
| 248 |
+
self.n_routed_experts = config.n_routed_experts
|
| 249 |
+
|
| 250 |
+
self.scoring_func = config.scoring_func
|
| 251 |
+
self.alpha = config.aux_loss_alpha
|
| 252 |
+
self.seq_aux = config.seq_aux
|
| 253 |
+
|
| 254 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 255 |
+
self.gating_dim = config.dim
|
| 256 |
+
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
| 257 |
+
self.reset_parameters()
|
| 258 |
+
|
| 259 |
+
def reset_parameters(self) -> None:
|
| 260 |
+
import torch.nn.init as init
|
| 261 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 262 |
+
|
| 263 |
+
def forward(self, hidden_states):
|
| 264 |
+
bsz, seq_len, h = hidden_states.shape
|
| 265 |
+
hidden_states = hidden_states.view(-1, h)
|
| 266 |
+
logits = F.linear(hidden_states, self.weight, None)
|
| 267 |
+
if self.scoring_func == 'softmax':
|
| 268 |
+
scores = logits.softmax(dim=-1)
|
| 269 |
+
else:
|
| 270 |
+
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
| 271 |
+
|
| 272 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
| 273 |
+
|
| 274 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
| 275 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
| 276 |
+
topk_weight = topk_weight / denominator
|
| 277 |
+
|
| 278 |
+
if self.training and self.alpha > 0.0:
|
| 279 |
+
scores_for_aux = scores
|
| 280 |
+
aux_topk = self.top_k
|
| 281 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
| 282 |
+
if self.seq_aux:
|
| 283 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
| 284 |
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
| 285 |
+
ce.scatter_add_(1, topk_idx_for_aux_loss,
|
| 286 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
|
| 287 |
+
seq_len * aux_topk / self.n_routed_experts)
|
| 288 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
|
| 289 |
+
else:
|
| 290 |
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
| 291 |
+
ce = mask_ce.float().mean(0)
|
| 292 |
+
Pi = scores_for_aux.mean(0)
|
| 293 |
+
fi = ce * self.n_routed_experts
|
| 294 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
| 295 |
+
else:
|
| 296 |
+
aux_loss = 0
|
| 297 |
+
return topk_idx, topk_weight, aux_loss
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class MOEFeedForward(nn.Module):
|
| 301 |
+
def __init__(self, config: LMConfig):
|
| 302 |
+
super().__init__()
|
| 303 |
+
self.config = config
|
| 304 |
+
self.experts = nn.ModuleList([
|
| 305 |
+
FeedForward(config)
|
| 306 |
+
for _ in range(config.n_routed_experts)
|
| 307 |
+
])
|
| 308 |
+
self.gate = MoEGate(config)
|
| 309 |
+
if config.n_shared_experts is not None:
|
| 310 |
+
self.shared_experts = FeedForward(config)
|
| 311 |
+
|
| 312 |
+
def forward(self, x):
|
| 313 |
+
identity = x
|
| 314 |
+
orig_shape = x.shape
|
| 315 |
+
bsz, seq_len, _ = x.shape
|
| 316 |
+
# 使用门控机制选择专家
|
| 317 |
+
topk_idx, topk_weight, aux_loss = self.gate(x)
|
| 318 |
+
x = x.view(-1, x.shape[-1])
|
| 319 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 320 |
+
if self.training:
|
| 321 |
+
# 训练模式下,重复输入数据
|
| 322 |
+
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
| 323 |
+
y = torch.empty_like(x, dtype=torch.float16)
|
| 324 |
+
for i, expert in enumerate(self.experts):
|
| 325 |
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
|
| 326 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
| 327 |
+
y = y.view(*orig_shape)
|
| 328 |
+
else:
|
| 329 |
+
# 推理模式下,只选择最优专家
|
| 330 |
+
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
| 331 |
+
if self.config.n_shared_experts is not None:
|
| 332 |
+
y = y + self.shared_experts(identity)
|
| 333 |
+
self.aux_loss = aux_loss
|
| 334 |
+
return y
|
| 335 |
+
|
| 336 |
+
@torch.no_grad()
|
| 337 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
| 338 |
+
expert_cache = torch.zeros_like(x)
|
| 339 |
+
idxs = flat_expert_indices.argsort()
|
| 340 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
| 341 |
+
token_idxs = idxs // self.config.num_experts_per_tok
|
| 342 |
+
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
|
| 343 |
+
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
|
| 344 |
+
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位���的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
|
| 345 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
| 346 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
| 347 |
+
if start_idx == end_idx:
|
| 348 |
+
continue
|
| 349 |
+
expert = self.experts[i]
|
| 350 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
| 351 |
+
expert_tokens = x[exp_token_idx]
|
| 352 |
+
expert_out = expert(expert_tokens).to(expert_cache.dtype)
|
| 353 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
| 354 |
+
# 使用 scatter_add_ 进行 sum 操作
|
| 355 |
+
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
| 356 |
+
|
| 357 |
+
return expert_cache
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class NanoChatBlock(nn.Module):
|
| 361 |
+
def __init__(self, layer_id: int, config: LMConfig):
|
| 362 |
+
super().__init__()
|
| 363 |
+
self.n_heads = config.n_heads
|
| 364 |
+
self.dim = config.dim
|
| 365 |
+
self.head_dim = config.dim // config.n_heads
|
| 366 |
+
if config.attention=='MLA':
|
| 367 |
+
self.attention = MLA(config)
|
| 368 |
+
elif config.attention=='GQA':
|
| 369 |
+
self.attention = GQA(config)
|
| 370 |
+
|
| 371 |
+
self.layer_id = layer_id
|
| 372 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 373 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 374 |
+
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
| 375 |
+
|
| 376 |
+
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
|
| 377 |
+
h_attn, past_kv = self.attention(
|
| 378 |
+
self.attention_norm(x),
|
| 379 |
+
pos_cis,
|
| 380 |
+
past_key_value=past_key_value,
|
| 381 |
+
use_cache=use_cache
|
| 382 |
+
)
|
| 383 |
+
h = x + h_attn
|
| 384 |
+
out = h + self.feed_forward(self.ffn_norm(h))
|
| 385 |
+
return out, past_kv
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class NanoChatLM(PreTrainedModel):
|
| 389 |
+
config_class = LMConfig
|
| 390 |
+
|
| 391 |
+
def __init__(self, params: LMConfig = None):
|
| 392 |
+
self.params = params or LMConfig()
|
| 393 |
+
super().__init__(self.params)
|
| 394 |
+
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
| 395 |
+
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
| 396 |
+
self.dropout = nn.Dropout(params.dropout)
|
| 397 |
+
self.layers = nn.ModuleList([NanoChatBlock(l, params) for l in range(self.n_layers)])
|
| 398 |
+
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
| 399 |
+
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
| 400 |
+
if params.tie_word_embeddings:
|
| 401 |
+
self.output.weight = self.tok_embeddings.weight
|
| 402 |
+
self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len,
|
| 403 |
+
theta=params.rope_theta), persistent=False)
|
| 404 |
+
self.OUT = CausalLMOutputWithPast()
|
| 405 |
+
|
| 406 |
+
def forward(self,
|
| 407 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 408 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 409 |
+
use_cache: bool = False,
|
| 410 |
+
**args):
|
| 411 |
+
past_key_values = past_key_values or [None] * len(self.layers)
|
| 412 |
+
start_pos = args.get('start_pos', 0)
|
| 413 |
+
h = self.dropout(self.tok_embeddings(input_ids))
|
| 414 |
+
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
| 415 |
+
past_kvs = []
|
| 416 |
+
for l, layer in enumerate(self.layers):
|
| 417 |
+
h, past_kv = layer(
|
| 418 |
+
h, pos_cis,
|
| 419 |
+
past_key_value=past_key_values[l],
|
| 420 |
+
use_cache=use_cache
|
| 421 |
+
)
|
| 422 |
+
past_kvs.append(past_kv)
|
| 423 |
+
logits = self.output(self.norm(h))
|
| 424 |
+
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
| 425 |
+
self.OUT.__setitem__('logits', logits)
|
| 426 |
+
self.OUT.__setitem__('aux_loss', aux_loss)
|
| 427 |
+
self.OUT.__setitem__('past_key_values', past_kvs)
|
| 428 |
+
return self.OUT
|
| 429 |
+
|
| 430 |
+
@torch.inference_mode()
|
| 431 |
+
def generate(self, input_ids, eos_token_id=151643, max_new_tokens=1024, temperature=0.75, top_p=0.90,
|
| 432 |
+
stream=False, rp=1., use_cache=True, pad_token_id=0, **args):
|
| 433 |
+
# 流式生成
|
| 434 |
+
if stream:
|
| 435 |
+
return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
|
| 436 |
+
|
| 437 |
+
# 直接生成
|
| 438 |
+
generated = []
|
| 439 |
+
for i in range(input_ids.size(0)):
|
| 440 |
+
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
|
| 441 |
+
out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
|
| 442 |
+
tokens_list = [tokens[:, -1:] for tokens in out]
|
| 443 |
+
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
|
| 444 |
+
full_sequence = torch.cat([non_pad, gen], dim=-1)
|
| 445 |
+
generated.append(full_sequence)
|
| 446 |
+
max_length = max(seq.size(1) for seq in generated)
|
| 447 |
+
generated = [
|
| 448 |
+
torch.cat(
|
| 449 |
+
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
|
| 450 |
+
dim=-1)
|
| 451 |
+
for seq in generated
|
| 452 |
+
]
|
| 453 |
+
return torch.cat(generated, dim=0)
|
| 454 |
+
|
| 455 |
+
def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
|
| 456 |
+
start, first_seq, past_kvs = input_ids.shape[1], True, None
|
| 457 |
+
while input_ids.shape[1] < max_new_tokens - 1:
|
| 458 |
+
if first_seq or not use_cache:
|
| 459 |
+
out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False
|
| 460 |
+
else:
|
| 461 |
+
out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache,
|
| 462 |
+
start_pos=input_ids.shape[1] - 1)
|
| 463 |
+
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
|
| 464 |
+
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
| 465 |
+
logits /= (temperature + 1e-9)
|
| 466 |
+
if top_p is not None and top_p < 1.0:
|
| 467 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 468 |
+
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
| 469 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 470 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 471 |
+
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
| 472 |
+
sorted_indices_to_remove[:, 0] = False
|
| 473 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 474 |
+
logits[indices_to_remove] = -float('Inf')
|
| 475 |
+
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
| 476 |
+
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
|
| 477 |
+
yield input_ids[:, start:]
|
| 478 |
+
if input_ids_next.item() == eos_token_id:
|
| 479 |
+
break
|
| 480 |
+
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dee4b365e9d90b07cc82f4ebfd15f7b2a3bc01a3614780b0421d521827ace4a4
|
| 3 |
+
size 1347624082
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|