Add new SentenceTransformer model
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +557 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:25580
|
| 8 |
+
- loss:OnlineContrastiveLoss
|
| 9 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
|
| 12 |
+
sentences:
|
| 13 |
+
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
|
| 14 |
+
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
|
| 15 |
+
Jawa dan Sumatera dengan Nasional (2018=100)
|
| 16 |
+
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
|
| 17 |
+
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
|
| 18 |
+
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
|
| 19 |
+
kedua tahun 2015?
|
| 20 |
+
sentences:
|
| 21 |
+
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
|
| 22 |
+
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
|
| 23 |
+
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
|
| 24 |
+
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
|
| 25 |
+
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
|
| 26 |
+
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
|
| 27 |
+
per provinsi, 2018?
|
| 28 |
+
sentences:
|
| 29 |
+
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
|
| 30 |
+
2012-2023
|
| 31 |
+
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
|
| 32 |
+
yang Ditamatkan (ribu rupiah), 2017
|
| 33 |
+
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
|
| 34 |
+
1996-2014 (1996=100)
|
| 35 |
+
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
|
| 36 |
+
2002-2023
|
| 37 |
+
sentences:
|
| 38 |
+
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
|
| 39 |
+
1999, 2002-2023
|
| 40 |
+
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
|
| 41 |
+
Ditamatkan (ribu rupiah), 2016
|
| 42 |
+
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
|
| 43 |
+
Harga Berlaku, 2010-2016
|
| 44 |
+
- source_sentence: Arus dana Q3 2006
|
| 45 |
+
sentences:
|
| 46 |
+
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
|
| 47 |
+
(miliar rupiah), 2005-2018
|
| 48 |
+
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
|
| 49 |
+
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
|
| 50 |
+
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
|
| 51 |
+
datasets:
|
| 52 |
+
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
|
| 53 |
+
pipeline_tag: sentence-similarity
|
| 54 |
+
library_name: sentence-transformers
|
| 55 |
+
metrics:
|
| 56 |
+
- cosine_accuracy
|
| 57 |
+
- cosine_accuracy_threshold
|
| 58 |
+
- cosine_f1
|
| 59 |
+
- cosine_f1_threshold
|
| 60 |
+
- cosine_precision
|
| 61 |
+
- cosine_recall
|
| 62 |
+
- cosine_ap
|
| 63 |
+
- cosine_mcc
|
| 64 |
+
model-index:
|
| 65 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 66 |
+
results:
|
| 67 |
+
- task:
|
| 68 |
+
type: binary-classification
|
| 69 |
+
name: Binary Classification
|
| 70 |
+
dataset:
|
| 71 |
+
name: allstats semantic mini v1 test
|
| 72 |
+
type: allstats-semantic-mini-v1_test
|
| 73 |
+
metrics:
|
| 74 |
+
- type: cosine_accuracy
|
| 75 |
+
value: 0.9739003467786093
|
| 76 |
+
name: Cosine Accuracy
|
| 77 |
+
- type: cosine_accuracy_threshold
|
| 78 |
+
value: 0.7543691396713257
|
| 79 |
+
name: Cosine Accuracy Threshold
|
| 80 |
+
- type: cosine_f1
|
| 81 |
+
value: 0.9601560323209808
|
| 82 |
+
name: Cosine F1
|
| 83 |
+
- type: cosine_f1_threshold
|
| 84 |
+
value: 0.7539516091346741
|
| 85 |
+
name: Cosine F1 Threshold
|
| 86 |
+
- type: cosine_precision
|
| 87 |
+
value: 0.9498346196251378
|
| 88 |
+
name: Cosine Precision
|
| 89 |
+
- type: cosine_recall
|
| 90 |
+
value: 0.9707042253521126
|
| 91 |
+
name: Cosine Recall
|
| 92 |
+
- type: cosine_ap
|
| 93 |
+
value: 0.9914629836831814
|
| 94 |
+
name: Cosine Ap
|
| 95 |
+
- type: cosine_mcc
|
| 96 |
+
value: 0.9408766527185352
|
| 97 |
+
name: Cosine Mcc
|
| 98 |
+
- task:
|
| 99 |
+
type: binary-classification
|
| 100 |
+
name: Binary Classification
|
| 101 |
+
dataset:
|
| 102 |
+
name: allstats semantic mini v1 dev
|
| 103 |
+
type: allstats-semantic-mini-v1_dev
|
| 104 |
+
metrics:
|
| 105 |
+
- type: cosine_accuracy
|
| 106 |
+
value: 0.9695199853987954
|
| 107 |
+
name: Cosine Accuracy
|
| 108 |
+
- type: cosine_accuracy_threshold
|
| 109 |
+
value: 0.7802088856697083
|
| 110 |
+
name: Cosine Accuracy Threshold
|
| 111 |
+
- type: cosine_f1
|
| 112 |
+
value: 0.9531511433351924
|
| 113 |
+
name: Cosine F1
|
| 114 |
+
- type: cosine_f1_threshold
|
| 115 |
+
value: 0.7691957950592041
|
| 116 |
+
name: Cosine F1 Threshold
|
| 117 |
+
- type: cosine_precision
|
| 118 |
+
value: 0.943677526228603
|
| 119 |
+
name: Cosine Precision
|
| 120 |
+
- type: cosine_recall
|
| 121 |
+
value: 0.9628169014084507
|
| 122 |
+
name: Cosine Recall
|
| 123 |
+
- type: cosine_ap
|
| 124 |
+
value: 0.9911428464355772
|
| 125 |
+
name: Cosine Ap
|
| 126 |
+
- type: cosine_mcc
|
| 127 |
+
value: 0.9304692189028425
|
| 128 |
+
name: Cosine Mcc
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 132 |
+
|
| 133 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 134 |
+
|
| 135 |
+
## Model Details
|
| 136 |
+
|
| 137 |
+
### Model Description
|
| 138 |
+
- **Model Type:** Sentence Transformer
|
| 139 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
|
| 140 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 141 |
+
- **Output Dimensionality:** 384 dimensions
|
| 142 |
+
- **Similarity Function:** Cosine Similarity
|
| 143 |
+
- **Training Dataset:**
|
| 144 |
+
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
|
| 145 |
+
<!-- - **Language:** Unknown -->
|
| 146 |
+
<!-- - **License:** Unknown -->
|
| 147 |
+
|
| 148 |
+
### Model Sources
|
| 149 |
+
|
| 150 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 151 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 152 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 153 |
+
|
| 154 |
+
### Full Model Architecture
|
| 155 |
+
|
| 156 |
+
```
|
| 157 |
+
SentenceTransformer(
|
| 158 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 159 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 160 |
+
)
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
## Usage
|
| 164 |
+
|
| 165 |
+
### Direct Usage (Sentence Transformers)
|
| 166 |
+
|
| 167 |
+
First install the Sentence Transformers library:
|
| 168 |
+
|
| 169 |
+
```bash
|
| 170 |
+
pip install -U sentence-transformers
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
Then you can load this model and run inference.
|
| 174 |
+
```python
|
| 175 |
+
from sentence_transformers import SentenceTransformer
|
| 176 |
+
|
| 177 |
+
# Download from the 🤗 Hub
|
| 178 |
+
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-4")
|
| 179 |
+
# Run inference
|
| 180 |
+
sentences = [
|
| 181 |
+
'Arus dana Q3 2006',
|
| 182 |
+
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
|
| 183 |
+
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
|
| 184 |
+
]
|
| 185 |
+
embeddings = model.encode(sentences)
|
| 186 |
+
print(embeddings.shape)
|
| 187 |
+
# [3, 384]
|
| 188 |
+
|
| 189 |
+
# Get the similarity scores for the embeddings
|
| 190 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 191 |
+
print(similarities.shape)
|
| 192 |
+
# [3, 3]
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
<!--
|
| 196 |
+
### Direct Usage (Transformers)
|
| 197 |
+
|
| 198 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 199 |
+
|
| 200 |
+
</details>
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
<!--
|
| 204 |
+
### Downstream Usage (Sentence Transformers)
|
| 205 |
+
|
| 206 |
+
You can finetune this model on your own dataset.
|
| 207 |
+
|
| 208 |
+
<details><summary>Click to expand</summary>
|
| 209 |
+
|
| 210 |
+
</details>
|
| 211 |
+
-->
|
| 212 |
+
|
| 213 |
+
<!--
|
| 214 |
+
### Out-of-Scope Use
|
| 215 |
+
|
| 216 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 217 |
+
-->
|
| 218 |
+
|
| 219 |
+
## Evaluation
|
| 220 |
+
|
| 221 |
+
### Metrics
|
| 222 |
+
|
| 223 |
+
#### Binary Classification
|
| 224 |
+
|
| 225 |
+
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
|
| 226 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 227 |
+
|
| 228 |
+
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|
| 229 |
+
|:--------------------------|:-------------------------------|:------------------------------|
|
| 230 |
+
| cosine_accuracy | 0.9739 | 0.9695 |
|
| 231 |
+
| cosine_accuracy_threshold | 0.7544 | 0.7802 |
|
| 232 |
+
| cosine_f1 | 0.9602 | 0.9532 |
|
| 233 |
+
| cosine_f1_threshold | 0.754 | 0.7692 |
|
| 234 |
+
| cosine_precision | 0.9498 | 0.9437 |
|
| 235 |
+
| cosine_recall | 0.9707 | 0.9628 |
|
| 236 |
+
| **cosine_ap** | **0.9915** | **0.9911** |
|
| 237 |
+
| cosine_mcc | 0.9409 | 0.9305 |
|
| 238 |
+
|
| 239 |
+
<!--
|
| 240 |
+
## Bias, Risks and Limitations
|
| 241 |
+
|
| 242 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 243 |
+
-->
|
| 244 |
+
|
| 245 |
+
<!--
|
| 246 |
+
### Recommendations
|
| 247 |
+
|
| 248 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 249 |
+
-->
|
| 250 |
+
|
| 251 |
+
## Training Details
|
| 252 |
+
|
| 253 |
+
### Training Dataset
|
| 254 |
+
|
| 255 |
+
#### query-hard-pos-neg-doc-pairs-statictable
|
| 256 |
+
|
| 257 |
+
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
|
| 258 |
+
* Size: 25,580 training samples
|
| 259 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
| 260 |
+
* Approximate statistics based on the first 1000 samples:
|
| 261 |
+
| | query | doc | label |
|
| 262 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
| 263 |
+
| type | string | string | int |
|
| 264 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
|
| 265 |
+
* Samples:
|
| 266 |
+
| query | doc | label |
|
| 267 |
+
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
|
| 268 |
+
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
|
| 269 |
+
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
|
| 270 |
+
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
|
| 271 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 272 |
+
|
| 273 |
+
### Evaluation Dataset
|
| 274 |
+
|
| 275 |
+
#### query-hard-pos-neg-doc-pairs-statictable
|
| 276 |
+
|
| 277 |
+
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
|
| 278 |
+
* Size: 5,479 evaluation samples
|
| 279 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
| 280 |
+
* Approximate statistics based on the first 1000 samples:
|
| 281 |
+
| | query | doc | label |
|
| 282 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 283 |
+
| type | string | string | int |
|
| 284 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
|
| 285 |
+
* Samples:
|
| 286 |
+
| query | doc | label |
|
| 287 |
+
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
|
| 288 |
+
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
|
| 289 |
+
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
|
| 290 |
+
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
|
| 291 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 292 |
+
|
| 293 |
+
### Training Hyperparameters
|
| 294 |
+
#### Non-Default Hyperparameters
|
| 295 |
+
|
| 296 |
+
- `eval_strategy`: steps
|
| 297 |
+
- `per_device_train_batch_size`: 32
|
| 298 |
+
- `per_device_eval_batch_size`: 32
|
| 299 |
+
- `num_train_epochs`: 2
|
| 300 |
+
- `warmup_ratio`: 0.1
|
| 301 |
+
- `fp16`: True
|
| 302 |
+
- `load_best_model_at_end`: True
|
| 303 |
+
- `eval_on_start`: True
|
| 304 |
+
|
| 305 |
+
#### All Hyperparameters
|
| 306 |
+
<details><summary>Click to expand</summary>
|
| 307 |
+
|
| 308 |
+
- `overwrite_output_dir`: False
|
| 309 |
+
- `do_predict`: False
|
| 310 |
+
- `eval_strategy`: steps
|
| 311 |
+
- `prediction_loss_only`: True
|
| 312 |
+
- `per_device_train_batch_size`: 32
|
| 313 |
+
- `per_device_eval_batch_size`: 32
|
| 314 |
+
- `per_gpu_train_batch_size`: None
|
| 315 |
+
- `per_gpu_eval_batch_size`: None
|
| 316 |
+
- `gradient_accumulation_steps`: 1
|
| 317 |
+
- `eval_accumulation_steps`: None
|
| 318 |
+
- `torch_empty_cache_steps`: None
|
| 319 |
+
- `learning_rate`: 5e-05
|
| 320 |
+
- `weight_decay`: 0.0
|
| 321 |
+
- `adam_beta1`: 0.9
|
| 322 |
+
- `adam_beta2`: 0.999
|
| 323 |
+
- `adam_epsilon`: 1e-08
|
| 324 |
+
- `max_grad_norm`: 1.0
|
| 325 |
+
- `num_train_epochs`: 2
|
| 326 |
+
- `max_steps`: -1
|
| 327 |
+
- `lr_scheduler_type`: linear
|
| 328 |
+
- `lr_scheduler_kwargs`: {}
|
| 329 |
+
- `warmup_ratio`: 0.1
|
| 330 |
+
- `warmup_steps`: 0
|
| 331 |
+
- `log_level`: passive
|
| 332 |
+
- `log_level_replica`: warning
|
| 333 |
+
- `log_on_each_node`: True
|
| 334 |
+
- `logging_nan_inf_filter`: True
|
| 335 |
+
- `save_safetensors`: True
|
| 336 |
+
- `save_on_each_node`: False
|
| 337 |
+
- `save_only_model`: False
|
| 338 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 339 |
+
- `no_cuda`: False
|
| 340 |
+
- `use_cpu`: False
|
| 341 |
+
- `use_mps_device`: False
|
| 342 |
+
- `seed`: 42
|
| 343 |
+
- `data_seed`: None
|
| 344 |
+
- `jit_mode_eval`: False
|
| 345 |
+
- `use_ipex`: False
|
| 346 |
+
- `bf16`: False
|
| 347 |
+
- `fp16`: True
|
| 348 |
+
- `fp16_opt_level`: O1
|
| 349 |
+
- `half_precision_backend`: auto
|
| 350 |
+
- `bf16_full_eval`: False
|
| 351 |
+
- `fp16_full_eval`: False
|
| 352 |
+
- `tf32`: None
|
| 353 |
+
- `local_rank`: 0
|
| 354 |
+
- `ddp_backend`: None
|
| 355 |
+
- `tpu_num_cores`: None
|
| 356 |
+
- `tpu_metrics_debug`: False
|
| 357 |
+
- `debug`: []
|
| 358 |
+
- `dataloader_drop_last`: False
|
| 359 |
+
- `dataloader_num_workers`: 0
|
| 360 |
+
- `dataloader_prefetch_factor`: None
|
| 361 |
+
- `past_index`: -1
|
| 362 |
+
- `disable_tqdm`: False
|
| 363 |
+
- `remove_unused_columns`: True
|
| 364 |
+
- `label_names`: None
|
| 365 |
+
- `load_best_model_at_end`: True
|
| 366 |
+
- `ignore_data_skip`: False
|
| 367 |
+
- `fsdp`: []
|
| 368 |
+
- `fsdp_min_num_params`: 0
|
| 369 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 370 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 371 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 372 |
+
- `deepspeed`: None
|
| 373 |
+
- `label_smoothing_factor`: 0.0
|
| 374 |
+
- `optim`: adamw_torch
|
| 375 |
+
- `optim_args`: None
|
| 376 |
+
- `adafactor`: False
|
| 377 |
+
- `group_by_length`: False
|
| 378 |
+
- `length_column_name`: length
|
| 379 |
+
- `ddp_find_unused_parameters`: None
|
| 380 |
+
- `ddp_bucket_cap_mb`: None
|
| 381 |
+
- `ddp_broadcast_buffers`: False
|
| 382 |
+
- `dataloader_pin_memory`: True
|
| 383 |
+
- `dataloader_persistent_workers`: False
|
| 384 |
+
- `skip_memory_metrics`: True
|
| 385 |
+
- `use_legacy_prediction_loop`: False
|
| 386 |
+
- `push_to_hub`: False
|
| 387 |
+
- `resume_from_checkpoint`: None
|
| 388 |
+
- `hub_model_id`: None
|
| 389 |
+
- `hub_strategy`: every_save
|
| 390 |
+
- `hub_private_repo`: None
|
| 391 |
+
- `hub_always_push`: False
|
| 392 |
+
- `gradient_checkpointing`: False
|
| 393 |
+
- `gradient_checkpointing_kwargs`: None
|
| 394 |
+
- `include_inputs_for_metrics`: False
|
| 395 |
+
- `include_for_metrics`: []
|
| 396 |
+
- `eval_do_concat_batches`: True
|
| 397 |
+
- `fp16_backend`: auto
|
| 398 |
+
- `push_to_hub_model_id`: None
|
| 399 |
+
- `push_to_hub_organization`: None
|
| 400 |
+
- `mp_parameters`:
|
| 401 |
+
- `auto_find_batch_size`: False
|
| 402 |
+
- `full_determinism`: False
|
| 403 |
+
- `torchdynamo`: None
|
| 404 |
+
- `ray_scope`: last
|
| 405 |
+
- `ddp_timeout`: 1800
|
| 406 |
+
- `torch_compile`: False
|
| 407 |
+
- `torch_compile_backend`: None
|
| 408 |
+
- `torch_compile_mode`: None
|
| 409 |
+
- `dispatch_batches`: None
|
| 410 |
+
- `split_batches`: None
|
| 411 |
+
- `include_tokens_per_second`: False
|
| 412 |
+
- `include_num_input_tokens_seen`: False
|
| 413 |
+
- `neftune_noise_alpha`: None
|
| 414 |
+
- `optim_target_modules`: None
|
| 415 |
+
- `batch_eval_metrics`: False
|
| 416 |
+
- `eval_on_start`: True
|
| 417 |
+
- `use_liger_kernel`: False
|
| 418 |
+
- `eval_use_gather_object`: False
|
| 419 |
+
- `average_tokens_across_devices`: False
|
| 420 |
+
- `prompts`: None
|
| 421 |
+
- `batch_sampler`: batch_sampler
|
| 422 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 423 |
+
|
| 424 |
+
</details>
|
| 425 |
+
|
| 426 |
+
### Training Logs
|
| 427 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
|
| 428 |
+
|:--------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:|
|
| 429 |
+
| -1 | -1 | - | - | 0.8789 | - |
|
| 430 |
+
| 0 | 0 | - | 1.0484 | - | 0.8789 |
|
| 431 |
+
| 0.025 | 20 | 0.9076 | 0.7143 | - | 0.8976 |
|
| 432 |
+
| 0.05 | 40 | 0.4666 | 0.4744 | - | 0.9234 |
|
| 433 |
+
| 0.075 | 60 | 0.4514 | 0.3208 | - | 0.9542 |
|
| 434 |
+
| 0.1 | 80 | 0.3153 | 0.2520 | - | 0.9666 |
|
| 435 |
+
| 0.125 | 100 | 0.1726 | 0.2074 | - | 0.9725 |
|
| 436 |
+
| 0.15 | 120 | 0.1056 | 0.1860 | - | 0.9750 |
|
| 437 |
+
| 0.175 | 140 | 0.1414 | 0.2540 | - | 0.9674 |
|
| 438 |
+
| 0.2 | 160 | 0.1091 | 0.2077 | - | 0.9747 |
|
| 439 |
+
| 0.225 | 180 | 0.108 | 0.2333 | - | 0.9690 |
|
| 440 |
+
| 0.25 | 200 | 0.1672 | 0.1618 | - | 0.9771 |
|
| 441 |
+
| 0.275 | 220 | 0.1086 | 0.1804 | - | 0.9775 |
|
| 442 |
+
| 0.3 | 240 | 0.083 | 0.1805 | - | 0.9760 |
|
| 443 |
+
| 0.325 | 260 | 0.083 | 0.1674 | - | 0.9709 |
|
| 444 |
+
| 0.35 | 280 | 0.1197 | 0.1735 | - | 0.9734 |
|
| 445 |
+
| 0.375 | 300 | 0.0811 | 0.1272 | - | 0.9805 |
|
| 446 |
+
| 0.4 | 320 | 0.049 | 0.1491 | - | 0.9791 |
|
| 447 |
+
| 0.425 | 340 | 0.0373 | 0.1651 | - | 0.9721 |
|
| 448 |
+
| 0.45 | 360 | 0.1116 | 0.1742 | - | 0.9756 |
|
| 449 |
+
| 0.475 | 380 | 0.0665 | 0.1175 | - | 0.9837 |
|
| 450 |
+
| 0.5 | 400 | 0.0698 | 0.1165 | - | 0.9841 |
|
| 451 |
+
| 0.525 | 420 | 0.1316 | 0.1353 | - | 0.9817 |
|
| 452 |
+
| 0.55 | 440 | 0.0753 | 0.1276 | - | 0.9824 |
|
| 453 |
+
| 0.575 | 460 | 0.0411 | 0.1353 | - | 0.9801 |
|
| 454 |
+
| 0.6 | 480 | 0.0099 | 0.1292 | - | 0.9811 |
|
| 455 |
+
| 0.625 | 500 | 0.0473 | 0.1118 | - | 0.9836 |
|
| 456 |
+
| 0.65 | 520 | 0.0201 | 0.1083 | - | 0.9836 |
|
| 457 |
+
| 0.675 | 540 | 0.0519 | 0.1089 | - | 0.9856 |
|
| 458 |
+
| 0.7 | 560 | 0.0652 | 0.1003 | - | 0.9875 |
|
| 459 |
+
| 0.725 | 580 | 0.0594 | 0.1201 | - | 0.9872 |
|
| 460 |
+
| 0.75 | 600 | 0.0536 | 0.0896 | - | 0.9893 |
|
| 461 |
+
| 0.775 | 620 | 0.0479 | 0.0855 | - | 0.9874 |
|
| 462 |
+
| 0.8 | 640 | 0.0301 | 0.0948 | - | 0.9876 |
|
| 463 |
+
| 0.825 | 660 | 0.014 | 0.0993 | - | 0.9883 |
|
| 464 |
+
| 0.85 | 680 | 0.0199 | 0.0930 | - | 0.9884 |
|
| 465 |
+
| 0.875 | 700 | 0.0375 | 0.0765 | - | 0.9918 |
|
| 466 |
+
| 0.9 | 720 | 0.0 | 0.0805 | - | 0.9916 |
|
| 467 |
+
| 0.925 | 740 | 0.0243 | 0.0816 | - | 0.9916 |
|
| 468 |
+
| 0.95 | 760 | 0.0209 | 0.0935 | - | 0.9896 |
|
| 469 |
+
| 0.975 | 780 | 0.02 | 0.0831 | - | 0.9897 |
|
| 470 |
+
| 1.0 | 800 | 0.0376 | 0.0849 | - | 0.9890 |
|
| 471 |
+
| 1.025 | 820 | 0.0113 | 0.0960 | - | 0.9883 |
|
| 472 |
+
| 1.05 | 840 | 0.01 | 0.1131 | - | 0.9868 |
|
| 473 |
+
| 1.075 | 860 | 0.0294 | 0.1069 | - | 0.9861 |
|
| 474 |
+
| 1.1 | 880 | 0.0367 | 0.0921 | - | 0.9899 |
|
| 475 |
+
| 1.125 | 900 | 0.0 | 0.0910 | - | 0.9898 |
|
| 476 |
+
| 1.15 | 920 | 0.0163 | 0.1122 | - | 0.9871 |
|
| 477 |
+
| 1.175 | 940 | 0.0072 | 0.1204 | - | 0.9852 |
|
| 478 |
+
| 1.2 | 960 | 0.0175 | 0.1047 | - | 0.9872 |
|
| 479 |
+
| 1.225 | 980 | 0.0065 | 0.0992 | - | 0.9882 |
|
| 480 |
+
| 1.25 | 1000 | 0.0104 | 0.0932 | - | 0.9890 |
|
| 481 |
+
| 1.275 | 1020 | 0.0281 | 0.0866 | - | 0.9897 |
|
| 482 |
+
| 1.3 | 1040 | 0.0169 | 0.0874 | - | 0.9899 |
|
| 483 |
+
| 1.325 | 1060 | 0.0069 | 0.0910 | - | 0.9904 |
|
| 484 |
+
| 1.35 | 1080 | 0.0 | 0.0983 | - | 0.9898 |
|
| 485 |
+
| 1.375 | 1100 | 0.0 | 0.0985 | - | 0.9897 |
|
| 486 |
+
| 1.4 | 1120 | 0.0146 | 0.0919 | - | 0.9904 |
|
| 487 |
+
| 1.425 | 1140 | 0.0075 | 0.0852 | - | 0.9908 |
|
| 488 |
+
| 1.45 | 1160 | 0.014 | 0.0845 | - | 0.9908 |
|
| 489 |
+
| 1.475 | 1180 | 0.0065 | 0.0816 | - | 0.9907 |
|
| 490 |
+
| 1.5 | 1200 | 0.0 | 0.0811 | - | 0.9907 |
|
| 491 |
+
| 1.525 | 1220 | 0.0103 | 0.0785 | - | 0.9910 |
|
| 492 |
+
| **1.55** | **1240** | **0.013** | **0.0721** | **-** | **0.9915** |
|
| 493 |
+
| 1.575 | 1260 | 0.0066 | 0.0793 | - | 0.9910 |
|
| 494 |
+
| 1.6 | 1280 | 0.0 | 0.0810 | - | 0.9909 |
|
| 495 |
+
| 1.625 | 1300 | 0.0239 | 0.0803 | - | 0.9912 |
|
| 496 |
+
| 1.65 | 1320 | 0.0155 | 0.0816 | - | 0.9908 |
|
| 497 |
+
| 1.675 | 1340 | 0.009 | 0.0859 | - | 0.9904 |
|
| 498 |
+
| 1.7 | 1360 | 0.0065 | 0.0855 | - | 0.9900 |
|
| 499 |
+
| 1.725 | 1380 | 0.0 | 0.0866 | - | 0.9899 |
|
| 500 |
+
| 1.75 | 1400 | 0.0127 | 0.0865 | - | 0.9907 |
|
| 501 |
+
| 1.775 | 1420 | 0.0064 | 0.0819 | - | 0.9909 |
|
| 502 |
+
| 1.8 | 1440 | 0.0 | 0.0828 | - | 0.9910 |
|
| 503 |
+
| 1.825 | 1460 | 0.0081 | 0.0818 | - | 0.9912 |
|
| 504 |
+
| 1.85 | 1480 | 0.0068 | 0.0875 | - | 0.9909 |
|
| 505 |
+
| 1.875 | 1500 | 0.0 | 0.0886 | - | 0.9909 |
|
| 506 |
+
| 1.9 | 1520 | 0.011 | 0.0846 | - | 0.9911 |
|
| 507 |
+
| 1.925 | 1540 | 0.0 | 0.0843 | - | 0.9911 |
|
| 508 |
+
| 1.95 | 1560 | 0.0 | 0.0843 | - | 0.9911 |
|
| 509 |
+
| 1.975 | 1580 | 0.0 | 0.0843 | - | 0.9911 |
|
| 510 |
+
| 2.0 | 1600 | 0.0162 | 0.0850 | - | 0.9911 |
|
| 511 |
+
| -1 | -1 | - | - | 0.9915 | - |
|
| 512 |
+
|
| 513 |
+
* The bold row denotes the saved checkpoint.
|
| 514 |
+
|
| 515 |
+
### Framework Versions
|
| 516 |
+
- Python: 3.10.12
|
| 517 |
+
- Sentence Transformers: 3.4.0
|
| 518 |
+
- Transformers: 4.48.1
|
| 519 |
+
- PyTorch: 2.5.1+cu124
|
| 520 |
+
- Accelerate: 1.3.0
|
| 521 |
+
- Datasets: 3.2.0
|
| 522 |
+
- Tokenizers: 0.21.0
|
| 523 |
+
|
| 524 |
+
## Citation
|
| 525 |
+
|
| 526 |
+
### BibTeX
|
| 527 |
+
|
| 528 |
+
#### Sentence Transformers
|
| 529 |
+
```bibtex
|
| 530 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 531 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 532 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 533 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 534 |
+
month = "11",
|
| 535 |
+
year = "2019",
|
| 536 |
+
publisher = "Association for Computational Linguistics",
|
| 537 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 538 |
+
}
|
| 539 |
+
```
|
| 540 |
+
|
| 541 |
+
<!--
|
| 542 |
+
## Glossary
|
| 543 |
+
|
| 544 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 545 |
+
-->
|
| 546 |
+
|
| 547 |
+
<!--
|
| 548 |
+
## Model Card Authors
|
| 549 |
+
|
| 550 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 551 |
+
-->
|
| 552 |
+
|
| 553 |
+
<!--
|
| 554 |
+
## Model Card Contact
|
| 555 |
+
|
| 556 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 557 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-miniLM-L12-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.48.1",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 250037
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.0",
|
| 4 |
+
"transformers": "4.48.1",
|
| 5 |
+
"pytorch": "2.5.1+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:daf9d26b22e235bc06dae0d0b61231efa7cc40e2834667abc25ea7b9b57d4e80
|
| 3 |
+
size 470637416
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 128,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": null,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "<unk>"
|
| 65 |
+
}
|
unigram.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
| 3 |
+
size 14763260
|