Add new SentenceTransformer model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +441 -0
- added_tokens.json +5 -0
- config.json +45 -0
- config_sentence_transformers.json +50 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +45 -0
- tokenizer.json +0 -0
- tokenizer_config.json +345 -0
- vocab.txt +0 -0
1_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d5716e26bbeed34d627dc912752311b1be10610ddbd0d841fdd526927a50f11
|
| 3 |
+
size 393304
|
README.md
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- ColBERT
|
| 4 |
+
- PyLate
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
pipeline_tag: sentence-similarity
|
| 10 |
+
library_name: PyLate
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# ColBERT-ko-v1.0
|
| 14 |
+
|
| 15 |
+
**ColBERT-ko-v1.0** is a Korean ColBERT model finetuned with [PyLate](https://github.com/lightonai/pylate). This model is trained exclusively on Korean dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
- **Model Type:** PyLate model
|
| 21 |
+
- **Document Length:** 1024 tokens
|
| 22 |
+
- **Query Length:** 32 tokens
|
| 23 |
+
- **Output Dimensionality:** 128 tokens
|
| 24 |
+
- **Similarity Function:** MaxSim
|
| 25 |
+
<!-- - **Language:** Unknown -->
|
| 26 |
+
<!-- - **License:** Unknown -->
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
### Full Model Architecture
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
ColBERT(
|
| 33 |
+
(0): Transformer({'max_seq_length': 1023, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 34 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 35 |
+
)
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Usage
|
| 39 |
+
<details>
|
| 40 |
+
<summary>PyLate for reranking</summary>
|
| 41 |
+
|
| 42 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
from pylate import rank, models
|
| 46 |
+
|
| 47 |
+
queries = [
|
| 48 |
+
"query A",
|
| 49 |
+
"query B",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
documents = [
|
| 53 |
+
["document A", "document B"],
|
| 54 |
+
["document 1", "document C", "document B"],
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
documents_ids = [
|
| 58 |
+
[1, 2],
|
| 59 |
+
[1, 3, 2],
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
model = models.ColBERT(
|
| 63 |
+
model_name_or_path="pylate_model_id",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
queries_embeddings = model.encode(
|
| 67 |
+
queries,
|
| 68 |
+
is_query=True,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
documents_embeddings = model.encode(
|
| 72 |
+
documents,
|
| 73 |
+
is_query=False,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
reranked_documents = rank.rerank(
|
| 77 |
+
documents_ids=documents_ids,
|
| 78 |
+
queries_embeddings=queries_embeddings,
|
| 79 |
+
documents_embeddings=documents_embeddings,
|
| 80 |
+
)
|
| 81 |
+
```
|
| 82 |
+
</details>
|
| 83 |
+
|
| 84 |
+
<details>
|
| 85 |
+
<summary>Usage with PLAID</summary>
|
| 86 |
+
First install the PyLate library:
|
| 87 |
+
|
| 88 |
+
```bash
|
| 89 |
+
pip install -U pylate
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Retrieval
|
| 93 |
+
|
| 94 |
+
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.
|
| 95 |
+
|
| 96 |
+
#### Indexing documents
|
| 97 |
+
|
| 98 |
+
Load the ColBERT model and initialize the PLAID index, then encode and index your documents:
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
from pylate import indexes, models, retrieve
|
| 102 |
+
|
| 103 |
+
# Step 1: Load the ColBERT model
|
| 104 |
+
model = models.ColBERT(
|
| 105 |
+
model_name_or_path="pylate_model_id",
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Step 2: Initialize the PLAID index
|
| 109 |
+
index = indexes.PLAID(
|
| 110 |
+
index_folder="pylate-index",
|
| 111 |
+
index_name="index",
|
| 112 |
+
override=True, # This overwrites the existing index if any
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Step 3: Encode the documents
|
| 116 |
+
documents_ids = ["1", "2", "3"]
|
| 117 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
| 118 |
+
|
| 119 |
+
documents_embeddings = model.encode(
|
| 120 |
+
documents,
|
| 121 |
+
batch_size=32,
|
| 122 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
| 123 |
+
show_progress_bar=True,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
| 127 |
+
index.add_documents(
|
| 128 |
+
documents_ids=documents_ids,
|
| 129 |
+
documents_embeddings=documents_embeddings,
|
| 130 |
+
)
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
| 134 |
+
|
| 135 |
+
```python
|
| 136 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
| 137 |
+
index = indexes.PLAID(
|
| 138 |
+
index_folder="pylate-index",
|
| 139 |
+
index_name="index",
|
| 140 |
+
)
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
#### Retrieving top-k documents for queries
|
| 144 |
+
|
| 145 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
| 146 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
| 147 |
+
|
| 148 |
+
```python
|
| 149 |
+
# Step 1: Initialize the ColBERT retriever
|
| 150 |
+
retriever = retrieve.ColBERT(index=index)
|
| 151 |
+
|
| 152 |
+
# Step 2: Encode the queries
|
| 153 |
+
queries_embeddings = model.encode(
|
| 154 |
+
["query for document 3", "query for document 1"],
|
| 155 |
+
batch_size=32,
|
| 156 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
| 157 |
+
show_progress_bar=True,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Step 3: Retrieve top-k documents
|
| 161 |
+
scores = retriever.retrieve(
|
| 162 |
+
queries_embeddings=queries_embeddings,
|
| 163 |
+
k=10, # Retrieve the top 10 matches for each query
|
| 164 |
+
)
|
| 165 |
+
```
|
| 166 |
+
</details>
|
| 167 |
+
|
| 168 |
+
<details>
|
| 169 |
+
<summary>Usage with MUVERA</summary>
|
| 170 |
+
First install the muvera-py (Python implementation of MUVERA):
|
| 171 |
+
|
| 172 |
+
```bash
|
| 173 |
+
git clone https://github.com/sionic-ai/muvera-py.git
|
| 174 |
+
cd muvera-py
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
Then run the main script:
|
| 178 |
+
|
| 179 |
+
```python
|
| 180 |
+
uv run main_pylate.py
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
</details>
|
| 184 |
+
|
| 185 |
+
<!--
|
| 186 |
+
### Direct Usage (Transformers)
|
| 187 |
+
|
| 188 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 189 |
+
|
| 190 |
+
</details>
|
| 191 |
+
-->
|
| 192 |
+
|
| 193 |
+
<!--
|
| 194 |
+
### Downstream Usage (Sentence Transformers)
|
| 195 |
+
|
| 196 |
+
You can finetune this model on your own dataset.
|
| 197 |
+
|
| 198 |
+
<details><summary>Click to expand</summary>
|
| 199 |
+
|
| 200 |
+
</details>
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
<!--
|
| 204 |
+
### Out-of-Scope Use
|
| 205 |
+
|
| 206 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 207 |
+
-->
|
| 208 |
+
|
| 209 |
+
## Evaluation
|
| 210 |
+
|
| 211 |
+
### Evaluation Dataset
|
| 212 |
+
| Dataset | Description | Average Length (characters) |
|
| 213 |
+
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------|
|
| 214 |
+
| [Ko-StrategyQA](https://huggingface.co/datasets/taeminlee/Ko-StrategyQA) | Korean ODQA multi-hop retrieval dataset (translated from StrategyQA) | 305.15 |
|
| 215 |
+
| [AutoRAGRetrieval](https://huggingface.co/datasets/yjoonjang/markers_bm) | Korean document retrieval dataset constructed by parsing PDFs from 5 domains: finance, public, medical, legal, and commerce | 823.60 |
|
| 216 |
+
| [PublicHealthQA](https://huggingface.co/datasets/xhluca/publichealth-qa) | Korean document retrieval dataset for medical and public health domains | 339.00 |
|
| 217 |
+
| [BelebeleRetrieval](https://huggingface.co/datasets/facebook/belebele) | Korean document retrieval dataset based on FLORES-200 | 243.11 |
|
| 218 |
+
| [MultiLongDocRetrieval](https://huggingface.co/datasets/Shitao/MLDR) | Korean long document retrieval dataset covering various domains | 13,813.44 |
|
| 219 |
+
<!-- | [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy) | Korean document retrieval dataset based on Wikipedia | 166.90 | -->
|
| 220 |
+
<!-- | [MIRACLRetrieval](https://huggingface.co/datasets/miracl/miracl) | Korean document retrieval dataset based on Wikipedia | 166.63 | -->
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
### Average Results
|
| 224 |
+
|
| 225 |
+
| Model | Parameters | Average Recall@10 | Average Precision@10 | Average NDCG@10 | Average F1@10 |
|
| 226 |
+
|-----------------------------------------------|------------|----------------|-------------------|--------------|------------|
|
| 227 |
+
| **ColBERT-ko-v1.0** | **0.1B** | **0.7999** | **0.0930** | **0.7172** | **0.1655**|
|
| 228 |
+
| jina-colbert-v2 | 0.5B | 0.7518 | 0.0888 | 0.6671 | 0.1577 |
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
<!--
|
| 232 |
+
## Bias, Risks and Limitations
|
| 233 |
+
|
| 234 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 235 |
+
-->
|
| 236 |
+
|
| 237 |
+
<!--
|
| 238 |
+
### Recommendations
|
| 239 |
+
|
| 240 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 241 |
+
-->
|
| 242 |
+
|
| 243 |
+
## Training Details
|
| 244 |
+
* Loss: <code>pylate.losses.cached_contrastive.CachedContrastive</code>
|
| 245 |
+
|
| 246 |
+
### Training Hyperparameters
|
| 247 |
+
#### Non-Default Hyperparameters
|
| 248 |
+
|
| 249 |
+
- `per_device_train_batch_size`: 128
|
| 250 |
+
- `per_device_eval_batch_size`: 32
|
| 251 |
+
- `learning_rate`: 3e-06
|
| 252 |
+
- `num_train_epochs`: 1
|
| 253 |
+
- `warmup_ratio`: 0.1
|
| 254 |
+
- `bf16`: True
|
| 255 |
+
|
| 256 |
+
#### All Hyperparameters
|
| 257 |
+
<details><summary>Click to expand</summary>
|
| 258 |
+
|
| 259 |
+
- `overwrite_output_dir`: False
|
| 260 |
+
- `do_predict`: False
|
| 261 |
+
- `eval_strategy`: steps
|
| 262 |
+
- `prediction_loss_only`: True
|
| 263 |
+
- `per_device_train_batch_size`: 128
|
| 264 |
+
- `per_device_eval_batch_size`: 32
|
| 265 |
+
- `per_gpu_train_batch_size`: None
|
| 266 |
+
- `per_gpu_eval_batch_size`: None
|
| 267 |
+
- `gradient_accumulation_steps`: 1
|
| 268 |
+
- `eval_accumulation_steps`: None
|
| 269 |
+
- `torch_empty_cache_steps`: None
|
| 270 |
+
- `learning_rate`: 3e-06
|
| 271 |
+
- `weight_decay`: 0.0
|
| 272 |
+
- `adam_beta1`: 0.9
|
| 273 |
+
- `adam_beta2`: 0.999
|
| 274 |
+
- `adam_epsilon`: 1e-08
|
| 275 |
+
- `max_grad_norm`: 1.0
|
| 276 |
+
- `num_train_epochs`: 1
|
| 277 |
+
- `max_steps`: -1
|
| 278 |
+
- `lr_scheduler_type`: linear
|
| 279 |
+
- `lr_scheduler_kwargs`: {}
|
| 280 |
+
- `warmup_ratio`: 0.1
|
| 281 |
+
- `warmup_steps`: 0
|
| 282 |
+
- `log_level`: passive
|
| 283 |
+
- `log_level_replica`: warning
|
| 284 |
+
- `log_on_each_node`: True
|
| 285 |
+
- `logging_nan_inf_filter`: True
|
| 286 |
+
- `save_safetensors`: True
|
| 287 |
+
- `save_on_each_node`: False
|
| 288 |
+
- `save_only_model`: False
|
| 289 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 290 |
+
- `no_cuda`: False
|
| 291 |
+
- `use_cpu`: False
|
| 292 |
+
- `use_mps_device`: False
|
| 293 |
+
- `seed`: 42
|
| 294 |
+
- `data_seed`: None
|
| 295 |
+
- `jit_mode_eval`: False
|
| 296 |
+
- `use_ipex`: False
|
| 297 |
+
- `bf16`: True
|
| 298 |
+
- `fp16`: False
|
| 299 |
+
- `fp16_opt_level`: O1
|
| 300 |
+
- `half_precision_backend`: auto
|
| 301 |
+
- `bf16_full_eval`: False
|
| 302 |
+
- `fp16_full_eval`: False
|
| 303 |
+
- `tf32`: None
|
| 304 |
+
- `local_rank`: 0
|
| 305 |
+
- `ddp_backend`: None
|
| 306 |
+
- `tpu_num_cores`: None
|
| 307 |
+
- `tpu_metrics_debug`: False
|
| 308 |
+
- `debug`: []
|
| 309 |
+
- `dataloader_drop_last`: True
|
| 310 |
+
- `dataloader_num_workers`: 0
|
| 311 |
+
- `dataloader_prefetch_factor`: None
|
| 312 |
+
- `past_index`: -1
|
| 313 |
+
- `disable_tqdm`: False
|
| 314 |
+
- `remove_unused_columns`: True
|
| 315 |
+
- `label_names`: None
|
| 316 |
+
- `load_best_model_at_end`: False
|
| 317 |
+
- `ignore_data_skip`: False
|
| 318 |
+
- `fsdp`: []
|
| 319 |
+
- `fsdp_min_num_params`: 0
|
| 320 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 321 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 322 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 323 |
+
- `deepspeed`: None
|
| 324 |
+
- `label_smoothing_factor`: 0.0
|
| 325 |
+
- `optim`: adamw_torch
|
| 326 |
+
- `optim_args`: None
|
| 327 |
+
- `adafactor`: False
|
| 328 |
+
- `group_by_length`: False
|
| 329 |
+
- `length_column_name`: length
|
| 330 |
+
- `ddp_find_unused_parameters`: None
|
| 331 |
+
- `ddp_bucket_cap_mb`: None
|
| 332 |
+
- `ddp_broadcast_buffers`: False
|
| 333 |
+
- `dataloader_pin_memory`: True
|
| 334 |
+
- `dataloader_persistent_workers`: False
|
| 335 |
+
- `skip_memory_metrics`: True
|
| 336 |
+
- `use_legacy_prediction_loop`: False
|
| 337 |
+
- `push_to_hub`: False
|
| 338 |
+
- `resume_from_checkpoint`: None
|
| 339 |
+
- `hub_model_id`: None
|
| 340 |
+
- `hub_strategy`: every_save
|
| 341 |
+
- `hub_private_repo`: None
|
| 342 |
+
- `hub_always_push`: False
|
| 343 |
+
- `gradient_checkpointing`: False
|
| 344 |
+
- `gradient_checkpointing_kwargs`: None
|
| 345 |
+
- `include_inputs_for_metrics`: False
|
| 346 |
+
- `include_for_metrics`: []
|
| 347 |
+
- `eval_do_concat_batches`: True
|
| 348 |
+
- `fp16_backend`: auto
|
| 349 |
+
- `push_to_hub_model_id`: None
|
| 350 |
+
- `push_to_hub_organization`: None
|
| 351 |
+
- `mp_parameters`:
|
| 352 |
+
- `auto_find_batch_size`: False
|
| 353 |
+
- `full_determinism`: False
|
| 354 |
+
- `torchdynamo`: None
|
| 355 |
+
- `ray_scope`: last
|
| 356 |
+
- `ddp_timeout`: 1800
|
| 357 |
+
- `torch_compile`: False
|
| 358 |
+
- `torch_compile_backend`: None
|
| 359 |
+
- `torch_compile_mode`: None
|
| 360 |
+
- `include_tokens_per_second`: False
|
| 361 |
+
- `include_num_input_tokens_seen`: False
|
| 362 |
+
- `neftune_noise_alpha`: None
|
| 363 |
+
- `optim_target_modules`: None
|
| 364 |
+
- `batch_eval_metrics`: False
|
| 365 |
+
- `eval_on_start`: False
|
| 366 |
+
- `use_liger_kernel`: False
|
| 367 |
+
- `eval_use_gather_object`: False
|
| 368 |
+
- `average_tokens_across_devices`: False
|
| 369 |
+
- `prompts`: None
|
| 370 |
+
- `batch_sampler`: batch_sampler
|
| 371 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 372 |
+
|
| 373 |
+
</details>
|
| 374 |
+
|
| 375 |
+
### Framework Versions
|
| 376 |
+
- Python: 3.10.18
|
| 377 |
+
- Sentence Transformers: 4.0.2
|
| 378 |
+
- PyLate: 1.3.0
|
| 379 |
+
- Transformers: 4.52.3
|
| 380 |
+
- PyTorch: 2.8.0+cu128
|
| 381 |
+
- Accelerate: 1.10.1
|
| 382 |
+
- Datasets: 3.6.0
|
| 383 |
+
- Tokenizers: 0.21.4
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
## Citation
|
| 387 |
+
|
| 388 |
+
### BibTeX
|
| 389 |
+
|
| 390 |
+
#### Sentence Transformers
|
| 391 |
+
```bibtex
|
| 392 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 393 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 394 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 395 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 396 |
+
month = "11",
|
| 397 |
+
year = "2019",
|
| 398 |
+
publisher = "Association for Computational Linguistics",
|
| 399 |
+
url = "https://arxiv.org/abs/1908.10084"
|
| 400 |
+
}
|
| 401 |
+
```
|
| 402 |
+
|
| 403 |
+
#### PyLate
|
| 404 |
+
```bibtex
|
| 405 |
+
@misc{PyLate,
|
| 406 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
| 407 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
| 408 |
+
url={https://github.com/lightonai/pylate},
|
| 409 |
+
year={2024}
|
| 410 |
+
}
|
| 411 |
+
```
|
| 412 |
+
|
| 413 |
+
#### CachedContrastive
|
| 414 |
+
```bibtex
|
| 415 |
+
@misc{gao2021scaling,
|
| 416 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
| 417 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
| 418 |
+
year={2021},
|
| 419 |
+
eprint={2101.06983},
|
| 420 |
+
archivePrefix={arXiv},
|
| 421 |
+
primaryClass={cs.LG}
|
| 422 |
+
}
|
| 423 |
+
```
|
| 424 |
+
|
| 425 |
+
<!--
|
| 426 |
+
## Glossary
|
| 427 |
+
|
| 428 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 429 |
+
-->
|
| 430 |
+
|
| 431 |
+
<!--
|
| 432 |
+
## Model Card Authors
|
| 433 |
+
|
| 434 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 435 |
+
-->
|
| 436 |
+
|
| 437 |
+
<!--
|
| 438 |
+
## Model Card Contact
|
| 439 |
+
|
| 440 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 441 |
+
-->
|
added_tokens.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<pad>": 49999,
|
| 3 |
+
"[D] ": 50001,
|
| 4 |
+
"[Q] ": 50000
|
| 5 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ModernBertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_activation": "gelu",
|
| 9 |
+
"classifier_bias": false,
|
| 10 |
+
"classifier_dropout": 0.0,
|
| 11 |
+
"classifier_pooling": "mean",
|
| 12 |
+
"cls_token_id": 0,
|
| 13 |
+
"decoder_bias": true,
|
| 14 |
+
"deterministic_flash_attn": false,
|
| 15 |
+
"embedding_dropout": 0.0,
|
| 16 |
+
"eos_token_id": 1,
|
| 17 |
+
"global_attn_every_n_layers": 3,
|
| 18 |
+
"global_rope_theta": 160000,
|
| 19 |
+
"gradient_checkpointing": false,
|
| 20 |
+
"hidden_activation": "gelu",
|
| 21 |
+
"hidden_size": 768,
|
| 22 |
+
"initializer_cutoff_factor": 2.0,
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 1152,
|
| 25 |
+
"layer_norm_eps": 1e-05,
|
| 26 |
+
"local_attention": 128,
|
| 27 |
+
"local_rope_theta": 10000.0,
|
| 28 |
+
"max_position_embeddings": 16384,
|
| 29 |
+
"mlp_bias": false,
|
| 30 |
+
"mlp_dropout": 0.0,
|
| 31 |
+
"model_type": "modernbert",
|
| 32 |
+
"norm_bias": false,
|
| 33 |
+
"norm_eps": 1e-05,
|
| 34 |
+
"num_attention_heads": 12,
|
| 35 |
+
"num_hidden_layers": 22,
|
| 36 |
+
"pad_token_id": 49999,
|
| 37 |
+
"position_embedding_type": "absolute",
|
| 38 |
+
"repad_logits_with_grad": false,
|
| 39 |
+
"sep_token_id": 1,
|
| 40 |
+
"sparse_pred_ignore_index": -100,
|
| 41 |
+
"sparse_prediction": false,
|
| 42 |
+
"torch_dtype": "float32",
|
| 43 |
+
"transformers_version": "4.52.3",
|
| 44 |
+
"vocab_size": 50002
|
| 45 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.52.3",
|
| 5 |
+
"pytorch": "2.8.0+cu128"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "MaxSim",
|
| 10 |
+
"query_prefix": "[Q] ",
|
| 11 |
+
"document_prefix": "[D] ",
|
| 12 |
+
"query_length": 32,
|
| 13 |
+
"document_length": 1024,
|
| 14 |
+
"attend_to_expansion_tokens": false,
|
| 15 |
+
"skiplist_words": [
|
| 16 |
+
"!",
|
| 17 |
+
"\"",
|
| 18 |
+
"#",
|
| 19 |
+
"$",
|
| 20 |
+
"%",
|
| 21 |
+
"&",
|
| 22 |
+
"'",
|
| 23 |
+
"(",
|
| 24 |
+
")",
|
| 25 |
+
"*",
|
| 26 |
+
"+",
|
| 27 |
+
",",
|
| 28 |
+
"-",
|
| 29 |
+
".",
|
| 30 |
+
"/",
|
| 31 |
+
":",
|
| 32 |
+
";",
|
| 33 |
+
"<",
|
| 34 |
+
"=",
|
| 35 |
+
">",
|
| 36 |
+
"?",
|
| 37 |
+
"@",
|
| 38 |
+
"[",
|
| 39 |
+
"\\",
|
| 40 |
+
"]",
|
| 41 |
+
"^",
|
| 42 |
+
"_",
|
| 43 |
+
"`",
|
| 44 |
+
"{",
|
| 45 |
+
"|",
|
| 46 |
+
"}",
|
| 47 |
+
"~"
|
| 48 |
+
],
|
| 49 |
+
"do_query_expansion": true
|
| 50 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d83cae96273b267581234f471dfdf7400a1bd9e2528eb6e7bcab0e67e67a66fd
|
| 3 |
+
size 594945784
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Dense",
|
| 12 |
+
"type": "pylate.models.Dense.Dense"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 1023,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<cls>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "<\\s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": "<mask>",
|
| 31 |
+
"sep_token": {
|
| 32 |
+
"content": "<sep>",
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"normalized": false,
|
| 35 |
+
"rstrip": false,
|
| 36 |
+
"single_word": false
|
| 37 |
+
},
|
| 38 |
+
"unk_token": {
|
| 39 |
+
"content": "<unk>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false
|
| 44 |
+
}
|
| 45 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<\\s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<unk>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<sep>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "<cls>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "<unused0>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"7": {
|
| 60 |
+
"content": "<unused1>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"8": {
|
| 68 |
+
"content": "<unused2>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"9": {
|
| 76 |
+
"content": "<unused3>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"10": {
|
| 84 |
+
"content": "<unused4>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"11": {
|
| 92 |
+
"content": "<unused5>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"12": {
|
| 100 |
+
"content": "<unused6>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"13": {
|
| 108 |
+
"content": "<unused7>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"14": {
|
| 116 |
+
"content": "<unused8>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"15": {
|
| 124 |
+
"content": "<unused9>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"16": {
|
| 132 |
+
"content": "<unused10>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"17": {
|
| 140 |
+
"content": "<unused11>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"18": {
|
| 148 |
+
"content": "<unused12>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"19": {
|
| 156 |
+
"content": "<unused13>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"20": {
|
| 164 |
+
"content": "<unused14>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"21": {
|
| 172 |
+
"content": "<unused15>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"22": {
|
| 180 |
+
"content": "<unused16>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"23": {
|
| 188 |
+
"content": "<unused17>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"24": {
|
| 196 |
+
"content": "<unused18>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"25": {
|
| 204 |
+
"content": "<unused19>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"26": {
|
| 212 |
+
"content": "<unused20>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"27": {
|
| 220 |
+
"content": "<unused21>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"28": {
|
| 228 |
+
"content": "<unused22>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"29": {
|
| 236 |
+
"content": "<unused23>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"30": {
|
| 244 |
+
"content": "<unused24>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"31": {
|
| 252 |
+
"content": "<unused25>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"32": {
|
| 260 |
+
"content": "<unused26>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"33": {
|
| 268 |
+
"content": "<unused27>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"34": {
|
| 276 |
+
"content": "<unused28>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"35": {
|
| 284 |
+
"content": "<unused29>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"36": {
|
| 292 |
+
"content": "<unused30>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"49999": {
|
| 300 |
+
"content": "<pad>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"50000": {
|
| 308 |
+
"content": "[Q] ",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": true,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": false
|
| 314 |
+
},
|
| 315 |
+
"50001": {
|
| 316 |
+
"content": "[D] ",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": true,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": false
|
| 322 |
+
}
|
| 323 |
+
},
|
| 324 |
+
"bos_token": "<s>",
|
| 325 |
+
"clean_up_tokenization_spaces": true,
|
| 326 |
+
"cls_token": "<cls>",
|
| 327 |
+
"do_lower_case": false,
|
| 328 |
+
"eos_token": "<\\s>",
|
| 329 |
+
"extra_special_tokens": {},
|
| 330 |
+
"mask_token": "<mask>",
|
| 331 |
+
"max_length": 1023,
|
| 332 |
+
"model_max_length": 1023,
|
| 333 |
+
"pad_to_multiple_of": null,
|
| 334 |
+
"pad_token": "<mask>",
|
| 335 |
+
"pad_token_type_id": 0,
|
| 336 |
+
"padding_side": "right",
|
| 337 |
+
"sep_token": "<sep>",
|
| 338 |
+
"stride": 0,
|
| 339 |
+
"strip_accents": null,
|
| 340 |
+
"tokenize_chinese_chars": true,
|
| 341 |
+
"tokenizer_class": "BertTokenizer",
|
| 342 |
+
"truncation_side": "right",
|
| 343 |
+
"truncation_strategy": "longest_first",
|
| 344 |
+
"unk_token": "<unk>"
|
| 345 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|