Update README.md
Browse files
README.md
CHANGED
|
@@ -13,9 +13,9 @@ language:
|
|
| 13 |
- ko
|
| 14 |
---
|
| 15 |
|
| 16 |
-
#
|
| 17 |
|
| 18 |
-
**
|
| 19 |
|
| 20 |
## Model Details
|
| 21 |
|
|
@@ -50,19 +50,20 @@ ColBERT(
|
|
| 50 |
| [MultiLongDocRetrieval](https://huggingface.co/datasets/Shitao/MLDR) | Korean long document retrieval dataset covering various domains | 13,813.44 |
|
| 51 |
<!-- | [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy) | Korean document retrieval dataset based on Wikipedia | 166.90 | -->
|
| 52 |
<!-- | [MIRACLRetrieval](https://huggingface.co/datasets/miracl/miracl) | Korean document retrieval dataset based on Wikipedia | 166.63 | -->
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
### Average Results
|
| 56 |
|
| 57 |
| Model | Parameters | Average Recall@10 | Average Precision@10 | Average NDCG@10 | Average F1@10 |
|
| 58 |
|-----------------------------------------------|------------|----------------|-------------------|--------------|------------|
|
| 59 |
-
| **
|
| 60 |
| [jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2) | 0.5B | 0.7518 | 0.0888 | 0.6671 | 0.1577 |
|
| 61 |
|
| 62 |
## Usage
|
| 63 |
### PyLate for reranking
|
| 64 |
|
| 65 |
-
If you only want to use the
|
| 66 |
|
| 67 |
```python
|
| 68 |
from pylate import rank, models
|
|
@@ -83,7 +84,7 @@ documents_ids = [
|
|
| 83 |
]
|
| 84 |
|
| 85 |
model = models.ColBERT(
|
| 86 |
-
model_name_or_path="
|
| 87 |
)
|
| 88 |
|
| 89 |
queries_embeddings = model.encode(
|
|
@@ -107,223 +108,12 @@ reranked_documents = rank.rerank(
|
|
| 107 |
First install the [muvera-py](https://github.com/sionic-ai/muvera-py) (Python implementation of MUVERA):
|
| 108 |
|
| 109 |
```bash
|
| 110 |
-
git clone https://github.com/
|
| 111 |
cd muvera-py
|
| 112 |
```
|
| 113 |
|
| 114 |
Then run the main file:
|
| 115 |
|
| 116 |
-
```python
|
| 117 |
-
# main_pylate.py
|
| 118 |
-
import time
|
| 119 |
-
from dataclasses import replace
|
| 120 |
-
import numpy as np
|
| 121 |
-
import torch
|
| 122 |
-
from datasets import load_dataset
|
| 123 |
-
import logging
|
| 124 |
-
from pylate.models import ColBERT as PylateColBERT
|
| 125 |
-
|
| 126 |
-
from fde_generator import (
|
| 127 |
-
FixedDimensionalEncodingConfig,
|
| 128 |
-
generate_query_fde,
|
| 129 |
-
generate_document_fde_batch,
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
DATASET_REPO_ID = "yjoonjang/markers_bm"
|
| 133 |
-
COLBERT_MODEL_NAME = "yjoonjang/ColBERT-ko-v1.0" # Supports pylate models
|
| 134 |
-
TOP_K = 10
|
| 135 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "mps"
|
| 136 |
-
|
| 137 |
-
logging.basicConfig(
|
| 138 |
-
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 139 |
-
)
|
| 140 |
-
logging.info(f"Using device: {DEVICE}")
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
# --- Helper Functions ---
|
| 144 |
-
def load_autorag_dataset(repo_id: str) -> (dict, dict, dict):
|
| 145 |
-
logging.info(f"Loading dataset from Hugging Face Hub: '{repo_id}'...")
|
| 146 |
-
corpus_ds = load_dataset(repo_id, "corpus", split="corpus")
|
| 147 |
-
queries_ds = load_dataset(repo_id, "queries", split="queries")
|
| 148 |
-
qrels_ds = load_dataset(repo_id, "default", split="test")
|
| 149 |
-
|
| 150 |
-
corpus = {
|
| 151 |
-
row["_id"]: {"title": row.get("title", ""), "text": row.get("text", "")}
|
| 152 |
-
for row in corpus_ds
|
| 153 |
-
}
|
| 154 |
-
queries = {row["_id"]: row["text"] for row in queries_ds}
|
| 155 |
-
qrels = {str(row["query-id"]): {str(row["corpus-id"]): 1} for row in qrels_ds}
|
| 156 |
-
|
| 157 |
-
logging.info(f"Dataset loaded: {len(corpus)} documents, {len(queries)} queries.")
|
| 158 |
-
return corpus, queries, qrels
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def evaluate_recall(results: dict, qrels: dict, k: int) -> float:
|
| 162 |
-
hits, total_queries = 0, 0
|
| 163 |
-
for query_id, ranked_docs in results.items():
|
| 164 |
-
relevant_docs = set(qrels.get(str(query_id), {}).keys())
|
| 165 |
-
if not relevant_docs:
|
| 166 |
-
continue
|
| 167 |
-
total_queries += 1
|
| 168 |
-
top_k_docs = set(list(ranked_docs.keys())[:k])
|
| 169 |
-
if not relevant_docs.isdisjoint(top_k_docs):
|
| 170 |
-
hits += 1
|
| 171 |
-
return hits / total_queries if total_queries > 0 else 0.0
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
def to_numpy(tensor_or_array) -> np.ndarray:
|
| 175 |
-
"""Safely convert a PyTorch Tensor or a NumPy array to a float32 NumPy array."""
|
| 176 |
-
if isinstance(tensor_or_array, torch.Tensor):
|
| 177 |
-
return tensor_or_array.cpu().detach().numpy().astype(np.float32)
|
| 178 |
-
elif isinstance(tensor_or_array, np.ndarray):
|
| 179 |
-
return tensor_or_array.astype(np.float32)
|
| 180 |
-
else:
|
| 181 |
-
raise TypeError(f"Unsupported type for conversion: {type(tensor_or_array)}")
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
class ColbertNativeRetriever:
|
| 185 |
-
"""Uses pylate's native ColBERT ranking (non-FDE)."""
|
| 186 |
-
|
| 187 |
-
def __init__(self, model_name=COLBERT_MODEL_NAME):
|
| 188 |
-
self.model = PylateColBERT(model_name_or_path=model_name, device=DEVICE)
|
| 189 |
-
if hasattr(self.model[0].tokenizer, "model_max_length"): # For modernbert support
|
| 190 |
-
self.model[0].tokenizer.model_input_names = ["input_ids", "attention_mask"]
|
| 191 |
-
self.doc_embeddings_map = {}
|
| 192 |
-
self.doc_ids = []
|
| 193 |
-
|
| 194 |
-
def index(self, corpus: dict):
|
| 195 |
-
self.doc_ids = list(corpus.keys())
|
| 196 |
-
documents_for_ranker = [{"id": doc_id, **corpus[doc_id]} for doc_id in self.doc_ids]
|
| 197 |
-
doc_texts = [f"{doc.get('title', '')} {doc.get('text', '')}".strip() for doc in documents_for_ranker]
|
| 198 |
-
|
| 199 |
-
logging.info(
|
| 200 |
-
f"[{self.__class__.__name__}] Generating ColBERT embeddings for all documents..."
|
| 201 |
-
)
|
| 202 |
-
doc_embeddings_list = self.model.encode(
|
| 203 |
-
sentences=doc_texts,
|
| 204 |
-
is_query=False,
|
| 205 |
-
convert_to_tensor=True,
|
| 206 |
-
normalize_embeddings=True,
|
| 207 |
-
)
|
| 208 |
-
self.doc_embeddings_map = dict(zip(self.doc_ids, doc_embeddings_list))
|
| 209 |
-
|
| 210 |
-
def search(self, query: str) -> dict:
|
| 211 |
-
query_embedding = self.model.encode(
|
| 212 |
-
sentences=query,
|
| 213 |
-
is_query=True,
|
| 214 |
-
convert_to_tensor=True,
|
| 215 |
-
normalize_embeddings=True,
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
scores = {}
|
| 219 |
-
with torch.no_grad():
|
| 220 |
-
for doc_id, doc_embedding in self.doc_embeddings_map.items():
|
| 221 |
-
late_interaction = torch.einsum("sh,th->st", query_embedding.to(DEVICE), doc_embedding.to(DEVICE))
|
| 222 |
-
score = late_interaction.max(dim=1).values.sum()
|
| 223 |
-
scores[doc_id] = score.item()
|
| 224 |
-
|
| 225 |
-
return dict(sorted(scores.items(), key=lambda item: item[1], reverse=True))
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
class ColbertFdeRetriever:
|
| 229 |
-
"""Uses a real ColBERT model to generate embeddings, then FDE for search."""
|
| 230 |
-
|
| 231 |
-
def __init__(self, model_name=COLBERT_MODEL_NAME):
|
| 232 |
-
self.model = PylateColBERT(model_name_or_path=model_name, device=DEVICE)
|
| 233 |
-
if hasattr(self.model[0].tokenizer, "model_max_length"): # For modernbert support
|
| 234 |
-
self.model[0].tokenizer.model_input_names = ["input_ids", "attention_mask"]
|
| 235 |
-
self.doc_config = FixedDimensionalEncodingConfig(
|
| 236 |
-
dimension=128,
|
| 237 |
-
num_repetitions=64,
|
| 238 |
-
num_simhash_projections=8,
|
| 239 |
-
seed=42,
|
| 240 |
-
fill_empty_partitions=True, # Config for documents
|
| 241 |
-
)
|
| 242 |
-
self.fde_index, self.doc_ids = None, []
|
| 243 |
-
|
| 244 |
-
def index(self, corpus: dict):
|
| 245 |
-
self.doc_ids = list(corpus.keys())
|
| 246 |
-
documents_for_ranker = [{"id": doc_id, **corpus[doc_id]} for doc_id in self.doc_ids]
|
| 247 |
-
doc_texts = [f"{doc.get('title', '')} {doc.get('text', '')}".strip() for doc in documents_for_ranker]
|
| 248 |
-
|
| 249 |
-
logging.info(f"[{self.__class__.__name__}] Generating native multi-vector embeddings...")
|
| 250 |
-
doc_embeddings_list = self.model.encode(
|
| 251 |
-
sentences=doc_texts,
|
| 252 |
-
is_query=False,
|
| 253 |
-
convert_to_numpy=True,
|
| 254 |
-
normalize_embeddings=True,
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
logging.info(f"[{self.__class__.__name__}] Generating FDEs from ColBERT embeddings in BATCH mode...")
|
| 258 |
-
self.fde_index = generate_document_fde_batch(doc_embeddings_list, self.doc_config)
|
| 259 |
-
|
| 260 |
-
def search(self, query: str) -> dict:
|
| 261 |
-
query_embeddings = self.model.encode(
|
| 262 |
-
sentences=query,
|
| 263 |
-
is_query=True,
|
| 264 |
-
convert_to_numpy=True,
|
| 265 |
-
normalize_embeddings=True,
|
| 266 |
-
)
|
| 267 |
-
|
| 268 |
-
query_config = replace(self.doc_config, fill_empty_partitions=False)
|
| 269 |
-
query_fde = generate_query_fde(query_embeddings, query_config)
|
| 270 |
-
scores = self.fde_index @ query_fde
|
| 271 |
-
return dict(sorted(zip(self.doc_ids, scores), key=lambda item: item[1], reverse=True))
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
if __name__ == "__main__":
|
| 275 |
-
corpus, queries, qrels = load_autorag_dataset(DATASET_REPO_ID)
|
| 276 |
-
|
| 277 |
-
logging.info("Initializing retrieval models...")
|
| 278 |
-
retrievers = {
|
| 279 |
-
"1. ColBERT (Native)": ColbertNativeRetriever(),
|
| 280 |
-
"2. ColBERT + FDE": ColbertFdeRetriever(),
|
| 281 |
-
}
|
| 282 |
-
|
| 283 |
-
timings, final_results = {}, {}
|
| 284 |
-
|
| 285 |
-
logging.info("--- PHASE 1: INDEXING ---")
|
| 286 |
-
for name, retriever in retrievers.items():
|
| 287 |
-
start_time = time.perf_counter()
|
| 288 |
-
retriever.index(corpus)
|
| 289 |
-
timings[name] = {"indexing_time": time.perf_counter() - start_time}
|
| 290 |
-
logging.info(f"'{name}' indexing finished in {timings[name]['indexing_time']:.2f} seconds.")
|
| 291 |
-
|
| 292 |
-
logging.info("--- PHASE 2: SEARCH & EVALUATION ---")
|
| 293 |
-
for name, retriever in retrievers.items():
|
| 294 |
-
logging.info(f"Running search for '{name}' on {len(queries)} queries...")
|
| 295 |
-
query_times = []
|
| 296 |
-
results = {}
|
| 297 |
-
for query_id, query_text in queries.items():
|
| 298 |
-
start_time = time.perf_counter()
|
| 299 |
-
results[str(query_id)] = retriever.search(query_text)
|
| 300 |
-
query_times.append(time.perf_counter() - start_time)
|
| 301 |
-
|
| 302 |
-
timings[name]["avg_query_time"] = np.mean(query_times)
|
| 303 |
-
final_results[name] = results
|
| 304 |
-
logging.info(f"'{name}' search finished. Avg query time: {timings[name]['avg_query_time'] * 1000:.2f} ms.")
|
| 305 |
-
|
| 306 |
-
print("\n" + "=" * 85)
|
| 307 |
-
print(f"{'FINAL REPORT':^85}")
|
| 308 |
-
print(f"(Dataset: {DATASET_REPO_ID})")
|
| 309 |
-
print("=" * 85)
|
| 310 |
-
print(
|
| 311 |
-
f"{'Retriever':<25} | {'Indexing Time (s)':<20} | {'Avg Query Time (ms)':<22} | {'Recall@{k}'.format(k=TOP_K):<10}"
|
| 312 |
-
)
|
| 313 |
-
print("-" * 85)
|
| 314 |
-
|
| 315 |
-
for name in retrievers.keys():
|
| 316 |
-
recall = evaluate_recall(final_results[name], qrels, k=TOP_K)
|
| 317 |
-
idx_time = timings[name]["indexing_time"]
|
| 318 |
-
query_time_ms = timings[name]["avg_query_time"] * 1000
|
| 319 |
-
|
| 320 |
-
print(
|
| 321 |
-
f"{name:<25} | {idx_time:<20.2f} | {query_time_ms:<22.2f} | {recall:<10.4f}"
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
print("=" * 85)
|
| 325 |
-
```
|
| 326 |
-
|
| 327 |
```bash
|
| 328 |
uv run main_pylate.py
|
| 329 |
```
|
|
@@ -351,7 +141,7 @@ from pylate import indexes, models, retrieve
|
|
| 351 |
|
| 352 |
# Step 1: Load the ColBERT model
|
| 353 |
model = models.ColBERT(
|
| 354 |
-
model_name_or_path="
|
| 355 |
)
|
| 356 |
|
| 357 |
# Step 2: Initialize the PLAID index
|
|
|
|
| 13 |
- ko
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# colbert-ko-v1.0
|
| 17 |
|
| 18 |
+
**colbert-ko-v1.0** is a Korean colbert model finetuned with [PyLate](https://github.com/lightonai/pylate). This model is trained exclusively on Korean dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 19 |
|
| 20 |
## Model Details
|
| 21 |
|
|
|
|
| 50 |
| [MultiLongDocRetrieval](https://huggingface.co/datasets/Shitao/MLDR) | Korean long document retrieval dataset covering various domains | 13,813.44 |
|
| 51 |
<!-- | [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy) | Korean document retrieval dataset based on Wikipedia | 166.90 | -->
|
| 52 |
<!-- | [MIRACLRetrieval](https://huggingface.co/datasets/miracl/miracl) | Korean document retrieval dataset based on Wikipedia | 166.63 | -->
|
| 53 |
+
We omit MIRACLRetrieval and MrTidyRetrieval in evalution due to our device conditions.
|
| 54 |
|
| 55 |
|
| 56 |
### Average Results
|
| 57 |
|
| 58 |
| Model | Parameters | Average Recall@10 | Average Precision@10 | Average NDCG@10 | Average F1@10 |
|
| 59 |
|-----------------------------------------------|------------|----------------|-------------------|--------------|------------|
|
| 60 |
+
| **colbert-ko-v1.0** | **0.1B** | **0.7999** | **0.0930** | **0.7172** | **0.1655**|
|
| 61 |
| [jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2) | 0.5B | 0.7518 | 0.0888 | 0.6671 | 0.1577 |
|
| 62 |
|
| 63 |
## Usage
|
| 64 |
### PyLate for reranking
|
| 65 |
|
| 66 |
+
If you only want to use the colbert model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
| 67 |
|
| 68 |
```python
|
| 69 |
from pylate import rank, models
|
|
|
|
| 84 |
]
|
| 85 |
|
| 86 |
model = models.ColBERT(
|
| 87 |
+
model_name_or_path="yjoonjang/colbert-ko-v1.0",
|
| 88 |
)
|
| 89 |
|
| 90 |
queries_embeddings = model.encode(
|
|
|
|
| 108 |
First install the [muvera-py](https://github.com/sionic-ai/muvera-py) (Python implementation of MUVERA):
|
| 109 |
|
| 110 |
```bash
|
| 111 |
+
git clone --branch feat/pylate https://github.com/yjoonjang/muvera-py.git
|
| 112 |
cd muvera-py
|
| 113 |
```
|
| 114 |
|
| 115 |
Then run the main file:
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
```bash
|
| 118 |
uv run main_pylate.py
|
| 119 |
```
|
|
|
|
| 141 |
|
| 142 |
# Step 1: Load the ColBERT model
|
| 143 |
model = models.ColBERT(
|
| 144 |
+
model_name_or_path="yjoonjang/colbert-ko-v1.0",
|
| 145 |
)
|
| 146 |
|
| 147 |
# Step 2: Initialize the PLAID index
|