yuezhengrong commited on
Commit
dc39cd5
·
verified ·
1 Parent(s): 7c2ad1c

Upload 6 files

Browse files
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UniFlowVisionModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_uniflow.UniFlowVisionConfig",
7
+ "AutoModel": "modeling_uniflow.UniFlowVisionModel"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "drop_path_rate": 0.1,
11
+ "dropout": 0.0,
12
+ "hidden_act": "gelu",
13
+ "hidden_size": 1024,
14
+ "image_size": 448,
15
+ "initializer_factor": 1.0,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4096,
18
+ "layer_norm_eps": 1e-06,
19
+ "model_type": "uniflow",
20
+ "norm_type": "layer_norm",
21
+ "num_attention_heads": 16,
22
+ "num_channels": 3,
23
+ "num_hidden_layers": 24,
24
+ "patch_size": 14,
25
+ "qk_normalization": false,
26
+ "qkv_bias": true,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.37.2",
29
+ "use_flash_attn": true,
30
+
31
+ "vit_hidden_size": 1024,
32
+ "llm_hidden_size": 1536,
33
+ "use_chal_proj": true,
34
+ "latent_ch": 64,
35
+ "use_global_blocks": true,
36
+ "global_blocks_depth": 6,
37
+
38
+ "use_cfg": false,
39
+ "use_disp_loss": false,
40
+ "decoder_type": "mlp",
41
+ "num_decoder_layers": 12,
42
+ "num_sampling_steps": "1"
43
+ }
configuration_uniflow.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Optional, Tuple, Union
3
+ from collections import OrderedDict
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+
11
+
12
+ class UniFlowVisionConfig(PretrainedConfig):
13
+ model_type = 'uniflow'
14
+
15
+ def __init__(
16
+ self,
17
+ num_channels=3,
18
+ patch_size=14,
19
+ image_size=224,
20
+ qkv_bias=False,
21
+ hidden_size=3200,
22
+ num_attention_heads=25,
23
+ intermediate_size=12800,
24
+ qk_normalization=True,
25
+ num_hidden_layers=48,
26
+ use_flash_attn=True,
27
+ hidden_act='gelu',
28
+ norm_type='rms_norm',
29
+ layer_norm_eps=1e-6,
30
+ dropout=0.0,
31
+ drop_path_rate=0.0,
32
+ attention_dropout=0.0,
33
+ initializer_range=0.02,
34
+ initializer_factor=0.1,
35
+ # enc_proj
36
+ vit_hidden_size=1024,
37
+ llm_hidden_size=1536,
38
+ latent_ch=64,
39
+ # flow decoder
40
+ use_global_blocks=True,
41
+ global_blocks_depth=6,
42
+ num_decoder_layers=12,
43
+ num_sampling_steps='100',
44
+ use_disp_loss=False,
45
+ **kwargs,
46
+ ):
47
+ super().__init__(**kwargs)
48
+
49
+ self.hidden_size = hidden_size
50
+ self.intermediate_size = intermediate_size
51
+ self.dropout = dropout
52
+ self.drop_path_rate = drop_path_rate
53
+ self.num_hidden_layers = num_hidden_layers
54
+ self.num_attention_heads = num_attention_heads
55
+ self.num_channels = num_channels
56
+ self.patch_size = patch_size
57
+ self.image_size = image_size
58
+ self.initializer_range = initializer_range
59
+ self.initializer_factor = initializer_factor
60
+ self.attention_dropout = attention_dropout
61
+ self.layer_norm_eps = layer_norm_eps
62
+ self.hidden_act = hidden_act
63
+ self.norm_type = norm_type
64
+ self.qkv_bias = qkv_bias
65
+ self.qk_normalization = qk_normalization
66
+ self.use_flash_attn = use_flash_attn
67
+ # enc_proj
68
+ self.vit_hidden_size = vit_hidden_size
69
+ self.llm_hidden_size = llm_hidden_size
70
+ self.latent_ch = latent_ch
71
+ self.use_disp_loss = use_disp_loss
72
+ # decoder
73
+ self.global_blocks_depth = global_blocks_depth
74
+ self.num_decoder_layers = num_decoder_layers
75
+ self.num_sampling_steps = num_sampling_steps
76
+
77
+
78
+ @classmethod
79
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
80
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
81
+
82
+ if 'vision_config' in config_dict:
83
+ config_dict = config_dict['vision_config']
84
+
85
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
86
+ logger.warning(
87
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
88
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
89
+ )
90
+
91
+ return cls.from_dict(config_dict, **kwargs)
92
+
flash_attention.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
2
+ import torch
3
+ import torch.nn as nn
4
+ from einops import rearrange
5
+
6
+ try: # v1
7
+ from flash_attn.flash_attn_interface import \
8
+ flash_attn_unpadded_qkvpacked_func
9
+ except: # v2
10
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
11
+
12
+ from flash_attn.bert_padding import pad_input, unpad_input
13
+
14
+
15
+ class FlashAttention(nn.Module):
16
+ """Implement the scaled dot product attention with softmax.
17
+ Arguments
18
+ ---------
19
+ softmax_scale: The temperature to use for the softmax attention.
20
+ (default: 1/sqrt(d_keys) where d_keys is computed at
21
+ runtime)
22
+ attention_dropout: The dropout rate to apply to the attention
23
+ (default: 0.0)
24
+ """
25
+
26
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
27
+ super().__init__()
28
+ self.softmax_scale = softmax_scale
29
+ self.dropout_p = attention_dropout
30
+
31
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
32
+ max_s=None, need_weights=False):
33
+ """Implements the multihead softmax attention.
34
+ Arguments
35
+ ---------
36
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
37
+ if unpadded: (nnz, 3, h, d)
38
+ key_padding_mask: a bool tensor of shape (B, S)
39
+ """
40
+ assert not need_weights
41
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
42
+ assert qkv.is_cuda
43
+
44
+ if cu_seqlens is None:
45
+ batch_size = qkv.shape[0]
46
+ seqlen = qkv.shape[1]
47
+ if key_padding_mask is None:
48
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
49
+ max_s = seqlen
50
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
51
+ device=qkv.device)
52
+ output = flash_attn_unpadded_qkvpacked_func(
53
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
54
+ softmax_scale=self.softmax_scale, causal=causal
55
+ )
56
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
57
+ else:
58
+ nheads = qkv.shape[-2]
59
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
60
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
61
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
62
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
63
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
64
+ softmax_scale=self.softmax_scale, causal=causal
65
+ )
66
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
67
+ indices, batch_size, seqlen),
68
+ 'b s (h d) -> b s h d', h=nheads)
69
+ else:
70
+ assert max_s is not None
71
+ output = flash_attn_unpadded_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+
76
+ return output, None
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4f441680be8f81ca9d9bad135219ab2e3e92a9a8c82eed60a9a3b2033e2d5e4
3
+ size 1810399952
modeling_uniflow.py ADDED
@@ -0,0 +1,845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Copyright (c) 2025, OpenGVLab. All rights reserved.
3
+ # Licensed under The MIT License [see LICENSE for details]
4
+ # UniFlow-(InternViT)
5
+ # --------------------------------------------------------
6
+
7
+ import ast
8
+ import math
9
+ import os
10
+ from collections import OrderedDict
11
+ from functools import lru_cache
12
+ from typing import Optional, Tuple, Union
13
+ import torch
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ from torch.utils.checkpoint import checkpoint
17
+ import numpy as np
18
+ from einops import rearrange
19
+ from timm.models.layers import DropPath, trunc_normal_
20
+ from timm.models.registry import register_model
21
+ from timm.models.vision_transformer import Block
22
+ from transformers.activations import ACT2FN
23
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import logging
26
+ from .configuration_uniflow import UniFlowVisionConfig
27
+
28
+ try:
29
+ from flash_attention import FlashAttention
30
+ has_flash_attn = True
31
+ except:
32
+ print('FlashAttention is not installed.')
33
+ has_flash_attn = False
34
+
35
+ try:
36
+ from apex.normalization import FusedRMSNorm
37
+
38
+ UniFlowRMSNorm = FusedRMSNorm # noqa
39
+
40
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of UniFlowRMSNorm')
41
+ except ImportError:
42
+ # using the normal UniFlowRMSNorm
43
+ pass
44
+ except Exception:
45
+ logger.warning('discovered apex but it failed to load, falling back to UniFlowRMSNorm')
46
+ pass
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ import warnings
51
+ warnings.filterwarnings("ignore")
52
+
53
+
54
+ #############################################################
55
+ # UniFlow Modules
56
+ #############################################################
57
+
58
+
59
+ def p2l_transform_tensor(x, patch_size):
60
+ """
61
+ Transform from pixel space to latent space
62
+ [B, C, H, W] -> [B, * H//patch_size * W//patch_size, C*patch_size*patch_size]
63
+ """
64
+ B, C, H, W = x.shape
65
+ return rearrange(
66
+ x,
67
+ "b c (h1 h2) (w1 w2) -> b (h1 w1) (c h2 w2)",
68
+ h1=H // patch_size,
69
+ h2=patch_size,
70
+ w1=W // patch_size,
71
+ w2=patch_size,
72
+ )
73
+
74
+
75
+ def l2p_transform_tensor(x, patch_size, img_size):
76
+ """
77
+ Transform from latent space to pixel space
78
+ [B, H//patch_size * W//patch_size, C*tubelet_size*patch_size*patch_size] -> [B, C, H, W]
79
+ """
80
+ B = x.shape[0]
81
+ C = x.shape[2] // (patch_size * patch_size)
82
+ return rearrange(
83
+ x,
84
+ "b (h1 w1) (c h2 w2) -> b c (h1 h2) (w1 w2)",
85
+ h1=img_size // patch_size,
86
+ h2=patch_size,
87
+ w1=img_size // patch_size,
88
+ w2=patch_size,
89
+ c=C,
90
+ )
91
+
92
+
93
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
94
+ assert embed_dim % 2 == 0
95
+
96
+ # use half of dimensions to encode grid_h
97
+ emb_h = get_1d_sincos_pos_embed_from_grid(
98
+ embed_dim // 2, grid[0]
99
+ ) # (H*W, D/2)
100
+ emb_w = get_1d_sincos_pos_embed_from_grid(
101
+ embed_dim // 2, grid[1]
102
+ ) # (H*W, D/2)
103
+
104
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
105
+ return emb
106
+
107
+
108
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
109
+ """
110
+ embed_dim: output dimension for each position
111
+ pos: a list of positions to be encoded: size (M,)
112
+ out: (M, D)
113
+ """
114
+ assert embed_dim % 2 == 0
115
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
116
+ omega /= embed_dim / 2.0
117
+ omega = 1.0 / 10000**omega # (D/2,)
118
+
119
+ pos = pos.reshape(-1) # (M,)
120
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
121
+
122
+ emb_sin = np.sin(out) # (M, D/2)
123
+ emb_cos = np.cos(out) # (M, D/2)
124
+
125
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
126
+ return emb
127
+
128
+
129
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
130
+ """
131
+ grid_size: int of the grid height and width
132
+ return:
133
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
134
+ """
135
+ grid_h = np.arange(grid_size, dtype=np.float32)
136
+ grid_w = np.arange(grid_size, dtype=np.float32)
137
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
138
+ grid = np.stack(grid, axis=0)
139
+
140
+ grid = grid.reshape([2, 1, grid_size, grid_size])
141
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
142
+ if cls_token:
143
+ pos_embed = np.concatenate(
144
+ [np.zeros([1, embed_dim]), pos_embed], axis=0
145
+ )
146
+ return pos_embed
147
+
148
+
149
+ class UniFlowRMSNorm(nn.Module):
150
+ def __init__(self, hidden_size, eps=1e-6):
151
+ super().__init__()
152
+ self.weight = nn.Parameter(torch.ones(hidden_size))
153
+ self.variance_epsilon = eps
154
+
155
+ def forward(self, hidden_states):
156
+ input_dtype = hidden_states.dtype
157
+ hidden_states = hidden_states.to(torch.float32)
158
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
159
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
160
+ return self.weight * hidden_states.to(input_dtype)
161
+
162
+ NORM2FN = {
163
+ 'rms_norm': UniFlowRMSNorm,
164
+ 'layer_norm': nn.LayerNorm,
165
+ }
166
+
167
+ class UniFlowVisionEmbeddings(nn.Module):
168
+ def __init__(self, config: UniFlowVisionConfig):
169
+ super().__init__()
170
+ self.config = config
171
+ self.embed_dim = config.hidden_size
172
+ self.image_size = config.image_size
173
+ self.patch_size = config.patch_size
174
+
175
+ self.class_embedding = nn.Parameter(
176
+ torch.randn(1, 1, self.embed_dim),
177
+ )
178
+
179
+ self.patch_embedding = nn.Conv2d(
180
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
181
+ )
182
+
183
+ self.num_patches = (self.image_size // self.patch_size) ** 2
184
+ self.num_positions = self.num_patches + 1
185
+
186
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
187
+
188
+ def _get_pos_embed(self, pos_embed, H, W):
189
+ target_dtype = pos_embed.dtype
190
+ pos_embed = pos_embed.float().reshape(
191
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
192
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
193
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
194
+ return pos_embed
195
+
196
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
197
+ target_dtype = self.patch_embedding.weight.dtype
198
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [batch*temporal, channel, width, height] [batch*temporal, channel*patch*patch, width//patch, height//patch]
199
+ batch_size, _, height, width = patch_embeds.shape
200
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2) # [batch, seq_le=1024, dim]
201
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
202
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
203
+ position_embedding = torch.cat([
204
+ self.position_embedding[:, :1, :],
205
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
206
+ ], dim=1)
207
+ embeddings = embeddings + position_embedding.to(target_dtype)
208
+ return embeddings
209
+
210
+
211
+ class UniFlowAttention(nn.Module):
212
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
213
+
214
+ def __init__(self, config: UniFlowVisionConfig):
215
+ super().__init__()
216
+ self.config = config
217
+ self.embed_dim = config.hidden_size
218
+ self.num_heads = config.num_attention_heads
219
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
220
+ self.head_dim = self.embed_dim // self.num_heads
221
+ if self.head_dim * self.num_heads != self.embed_dim:
222
+ raise ValueError(
223
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
224
+ f' {self.num_heads}).'
225
+ )
226
+
227
+ self.scale = self.head_dim ** -0.5
228
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
229
+ self.attn_drop = nn.Dropout(config.attention_dropout)
230
+ self.proj_drop = nn.Dropout(config.dropout)
231
+
232
+ self.qk_normalization = config.qk_normalization
233
+
234
+ if self.qk_normalization:
235
+ self.q_norm = UniFlowRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
236
+ self.k_norm = UniFlowRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
237
+
238
+ if self.use_flash_attn:
239
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
240
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
241
+
242
+ def _naive_attn(
243
+ self, x,
244
+ attn_mask=None,
245
+ ):
246
+ B, N, C = x.shape
247
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
248
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
249
+
250
+ if self.qk_normalization:
251
+ B_, H_, N_, D_ = q.shape
252
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
253
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
254
+
255
+ attn_bias = torch.zeros(N, N, dtype=q.dtype, device=q.device)
256
+ if attn_mask is not None:
257
+ assert attn_mask.dtype == torch.bool
258
+ attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
259
+
260
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
261
+ attn += attn_bias # masking
262
+ attn = attn.softmax(dim=-1)
263
+ attn = self.attn_drop(attn)
264
+
265
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
266
+ x = self.proj(x)
267
+ x = self.proj_drop(x)
268
+ return x
269
+
270
+ def _flash_attn(
271
+ self, x, key_padding_mask=None, need_weights=False,
272
+ attn_mask=None,
273
+ ):
274
+ qkv = self.qkv(x)
275
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
276
+
277
+ if self.qk_normalization:
278
+ q, k, v = qkv.unbind(2)
279
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
280
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
281
+ qkv = torch.stack([q, k, v], dim=2)
282
+
283
+ context, _ = self.inner_attn(
284
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False,
285
+ )
286
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
287
+ outs = self.proj_drop(outs)
288
+ return outs
289
+
290
+ def forward(
291
+ self, hidden_states: torch.Tensor,
292
+ attn_mask=None,
293
+ ) -> torch.Tensor:
294
+ x = self._naive_attn(hidden_states, attn_mask=attn_mask) if not self.use_flash_attn \
295
+ else self._flash_attn(hidden_states, attn_mask=attn_mask)
296
+ return x
297
+
298
+
299
+ class UniFlowMLP(nn.Module):
300
+ def __init__(self, config: UniFlowVisionConfig):
301
+ super().__init__()
302
+ self.config = config
303
+ self.act = ACT2FN[config.hidden_act]
304
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
305
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
306
+
307
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
308
+ hidden_states = self.fc1(hidden_states)
309
+ hidden_states = self.act(hidden_states)
310
+ hidden_states = self.fc2(hidden_states)
311
+ return hidden_states
312
+
313
+
314
+ class UniFlowVisionEncoderLayer(nn.Module):
315
+ def __init__(self, config: UniFlowVisionConfig, drop_path_rate: float):
316
+ super().__init__()
317
+ self.embed_dim = config.hidden_size
318
+ self.intermediate_size = config.intermediate_size
319
+ self.norm_type = config.norm_type
320
+
321
+ self.attn = UniFlowAttention(config)
322
+ self.mlp = UniFlowMLP(config)
323
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
324
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
325
+
326
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
327
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
328
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
329
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
330
+
331
+ def forward(
332
+ self,
333
+ hidden_states: torch.Tensor,
334
+ attn_mask=None,
335
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
336
+ """
337
+ Args:
338
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
339
+ """
340
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states), attn_mask=attn_mask) * self.ls1)
341
+
342
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
343
+
344
+ return hidden_states
345
+
346
+
347
+ class UniFlowVisionEncoder(nn.Module):
348
+ """
349
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
350
+ [`UniFlowEncoderLayer`].
351
+ Args:
352
+ config (`UniFlowConfig`):
353
+ The corresponding vision configuration for the `UniFlowEncoder`.
354
+ """
355
+
356
+ def __init__(self, config: UniFlowVisionConfig):
357
+ super().__init__()
358
+ self.config = config
359
+ # stochastic depth decay rule
360
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
361
+ self.layers = nn.ModuleList([
362
+ UniFlowVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
363
+ self.gradient_checkpointing = False
364
+
365
+ def forward(
366
+ self,
367
+ inputs_embeds,
368
+ output_hidden_states: Optional[bool] = None,
369
+ return_dict: Optional[bool] = None,
370
+ attn_mask=None,
371
+ ) -> Union[Tuple, BaseModelOutput]:
372
+ r"""
373
+ Args:
374
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
375
+ Embedded representation of the inputs. Should be float, not int tokens.
376
+ output_hidden_states (`bool`, *optional*):
377
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
378
+ for more detail.
379
+ return_dict (`bool`, *optional*):
380
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
381
+ """
382
+ output_hidden_states = (
383
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
384
+ )
385
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
386
+
387
+ encoder_states = () if output_hidden_states else None
388
+ hidden_states = inputs_embeds
389
+
390
+ for idx, encoder_layer in enumerate(self.layers):
391
+ if output_hidden_states:
392
+ encoder_states = encoder_states + (hidden_states,)
393
+ if self.gradient_checkpointing and self.training:
394
+ layer_outputs = torch.utils.checkpoint.checkpoint(
395
+ encoder_layer,
396
+ attn_mask,
397
+ )
398
+ else:
399
+ layer_outputs = encoder_layer(
400
+ hidden_states,
401
+ attn_mask,
402
+ )
403
+ hidden_states = layer_outputs
404
+
405
+ if output_hidden_states:
406
+ encoder_states = encoder_states + (hidden_states,)
407
+
408
+ if not return_dict:
409
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
410
+ return BaseModelOutput(
411
+ last_hidden_state=hidden_states, hidden_states=encoder_states
412
+ )
413
+
414
+
415
+ class Distill_Adapter(nn.Module):
416
+ def __init__(self, in_channels=1408, out_channels=3200,
417
+ norm_layer=nn.LayerNorm):
418
+ super().__init__()
419
+
420
+ self.head = nn.Linear(in_channels, out_channels)
421
+ self.norm = norm_layer(out_channels)
422
+
423
+ self.apply(self._init_weights)
424
+
425
+ def _init_weights(self, m):
426
+ if isinstance(m, nn.Linear):
427
+ nn.init.xavier_uniform_(m.weight)
428
+ if isinstance(m, nn.Linear) and m.bias is not None:
429
+ nn.init.constant_(m.bias, 0)
430
+ elif isinstance(m, nn.LayerNorm):
431
+ nn.init.constant_(m.bias, 0)
432
+ nn.init.constant_(m.weight, 1.0)
433
+
434
+ def forward(self, x):
435
+ x = self.norm(self.head(x))
436
+ return x
437
+
438
+
439
+ class FlowDecoder(nn.Module):
440
+ """ patch-wise pixel flow decoder (rectified flow) """
441
+ def __init__(
442
+ self, target_channels, z_channels, depth, width, grad_checkpointing=False, num_sampling_steps='10',
443
+ train_schedule='fat_lognormal', use_cfg=False, noise_concat=False, patch_size=14, img_size=224,
444
+ ):
445
+ super().__init__()
446
+ self.patch_size = patch_size
447
+ self.img_size = img_size
448
+
449
+ # configs
450
+ self.use_cfg = use_cfg
451
+ self.train_schedule = train_schedule
452
+ self.num_sampling_steps = int(num_sampling_steps)
453
+ self.noise_concat = noise_concat
454
+ print(f"Sampling Step: {self.num_sampling_steps}")
455
+
456
+ # mlp head (latent to pixel)
457
+ self.in_channels = target_channels + z_channels if noise_concat else target_channels
458
+ self.net = SimpleMLPAdaLN(
459
+ in_channels=target_channels,
460
+ model_channels=width,
461
+ out_channels=target_channels,
462
+ z_channels=z_channels,
463
+ num_res_blocks=depth,
464
+ grad_checkpointing=grad_checkpointing
465
+ )
466
+
467
+ @torch.no_grad()
468
+ def forward(self, z, schedule="linear", cfg=1.0, cfg_interval=None):
469
+
470
+ b, n, c_z = z.shape
471
+ z = z.reshape(b*n, c_z)
472
+ sample_steps = self.num_sampling_steps
473
+
474
+ # get all timesteps ts and intervals Δts
475
+ if schedule == "linear":
476
+ ts = torch.arange(1, sample_steps + 1).flip(0) / sample_steps
477
+ dts = torch.ones_like(ts) * (1.0 / sample_steps)
478
+ elif schedule.startswith("pow"): # "pow_0.25"
479
+ p = float(schedule.split("_")[1])
480
+ ts = torch.arange(0, sample_steps + 1).flip(0) ** (1 / p) / sample_steps ** (
481
+ 1 / p
482
+ )
483
+ dts = ts[:-1] - ts[1:]
484
+ else:
485
+ raise NotImplementedError
486
+ ts = 1 - ts
487
+
488
+ # cfg interval
489
+ if cfg_interval is None: # cfg_interval = "(.17,1.02)"
490
+ interval = None
491
+ else:
492
+ cfg_lo, cfg_hi = ast.literal_eval(cfg_interval)
493
+ interval = self._edm_to_flow_convention(cfg_lo), self._edm_to_flow_convention(cfg_hi)
494
+
495
+ # sampling (sample_steps) steps: noise X0 -> clean X1
496
+ trajs = []
497
+ x = torch.randn(b*n, self.in_channels).cuda() # noise start [b,n,c]
498
+ x = x.to(z.dtype)
499
+
500
+ null_z = z.clone() * 0.0 if cfg != 1.0 else None
501
+ for i, (t, dt) in enumerate((zip(ts, dts))):
502
+ timesteps = torch.tensor([t] * (b*n)).to(z.device)
503
+
504
+ xc = x
505
+ if self.noise_concat:
506
+ xc = torch.cat([x, z], dim=-1) # c: 192 + 768 = 960
507
+ vc = self.net(x=xc, t=1000*timesteps, c=z) # conditional v
508
+
509
+ # classifier free guidance
510
+ if null_z is not None and (interval is None or ((t.item() >= interval[0]) and (t.item() <= interval[1]))):
511
+ xu = x
512
+ if self.noise_concat:
513
+ xu = torch.cat([x, null_z], dim=-1) # c: 192 + 768=960
514
+ vu = self.net(x=xu, t=1000*timesteps, c=null_z) # unconditional v
515
+ vc = vu + cfg * (vc - vu)
516
+
517
+ # update x
518
+ x = x + dt * vc
519
+ trajs.append(x)
520
+
521
+ sampled_token = trajs[-1]
522
+ sampled_image = l2p_transform_tensor(sampled_token.reshape(b, n, self.in_channels), patch_size=self.patch_size, img_size=self.img_size)
523
+ return sampled_image
524
+
525
+
526
+ def modulate(x, shift, scale):
527
+ return x * (1 + scale) + shift
528
+
529
+
530
+ class TimestepEmbedder(nn.Module):
531
+ """
532
+ Embeds scalar timesteps into vector representations.
533
+ """
534
+ def __init__(self, hidden_size, frequency_embedding_size=256):
535
+ super().__init__()
536
+ self.mlp = nn.Sequential(
537
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
538
+ nn.SiLU(),
539
+ nn.Linear(hidden_size, hidden_size, bias=True),
540
+ )
541
+ self.frequency_embedding_size = frequency_embedding_size
542
+
543
+ @staticmethod
544
+ def timestep_embedding(t, dim, max_period=10000):
545
+ """
546
+ Create sinusoidal timestep embeddings.
547
+ :param t: a 1-D Tensor of N indices, one per batch element.
548
+ These may be fractional.
549
+ :param dim: the dimension of the output.
550
+ :param max_period: controls the minimum frequency of the embeddings.
551
+ :return: an (N, D) Tensor of positional embeddings.
552
+ """
553
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
554
+ half = dim // 2
555
+ freqs = torch.exp(
556
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
557
+ ).to(device=t.device)
558
+ args = t[:, None].float() * freqs[None]
559
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
560
+ if dim % 2:
561
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
562
+ return embedding
563
+
564
+ def forward(self, t):
565
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.mlp[0].weight.dtype)
566
+ t_emb = self.mlp(t_freq)
567
+ return t_emb
568
+
569
+
570
+ class ResBlock(nn.Module):
571
+ """
572
+ A residual block that can optionally change the number of channels.
573
+ :param channels: the number of input channels.
574
+ """
575
+
576
+ def __init__(
577
+ self,
578
+ channels
579
+ ):
580
+ super().__init__()
581
+ self.channels = channels
582
+
583
+ self.in_ln = nn.LayerNorm(channels, eps=1e-6)
584
+ self.mlp = nn.Sequential(
585
+ nn.Linear(channels, channels, bias=True),
586
+ nn.SiLU(),
587
+ nn.Linear(channels, channels, bias=True),
588
+ )
589
+
590
+ self.adaLN_modulation = nn.Sequential(
591
+ nn.SiLU(),
592
+ nn.Linear(channels, 3 * channels, bias=True)
593
+ )
594
+
595
+ def forward(self, x, y):
596
+ shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1)
597
+ h = modulate(self.in_ln(x), shift_mlp, scale_mlp)
598
+ h = self.mlp(h)
599
+ return x + gate_mlp * h
600
+
601
+
602
+ class FinalLayer(nn.Module):
603
+ """
604
+ The final layer adopted from DiT.
605
+ """
606
+ def __init__(self, model_channels, out_channels):
607
+ super().__init__()
608
+ self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6)
609
+ self.linear = nn.Linear(model_channels, out_channels, bias=True)
610
+ self.adaLN_modulation = nn.Sequential(
611
+ nn.SiLU(),
612
+ nn.Linear(model_channels, 2 * model_channels, bias=True)
613
+ )
614
+
615
+ def forward(self, x, c):
616
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
617
+ x = modulate(self.norm_final(x), shift, scale)
618
+ x = self.linear(x)
619
+ return x
620
+
621
+
622
+ class SimpleMLPAdaLN(nn.Module):
623
+ """
624
+ The MLP for Diffusion Loss.
625
+ :param in_channels: channels in the input Tensor.
626
+ :param model_channels: base channel count for the model.
627
+ :param out_channels: channels in the output Tensor.
628
+ :param z_channels: channels in the condition.
629
+ :param num_res_blocks: number of residual blocks per downsample.
630
+ """
631
+
632
+ def __init__(
633
+ self,
634
+ in_channels,
635
+ model_channels,
636
+ out_channels,
637
+ z_channels,
638
+ num_res_blocks,
639
+ grad_checkpointing=False
640
+ ):
641
+ super().__init__()
642
+
643
+ self.in_channels = in_channels
644
+ self.model_channels = model_channels
645
+ self.out_channels = out_channels
646
+ self.num_res_blocks = num_res_blocks
647
+ self.grad_checkpointing = grad_checkpointing
648
+
649
+ self.time_embed = TimestepEmbedder(model_channels)
650
+ self.cond_embed = nn.Linear(z_channels, model_channels)
651
+
652
+ self.input_proj = nn.Linear(in_channels, model_channels)
653
+
654
+ res_blocks = []
655
+ for i in range(num_res_blocks):
656
+ res_blocks.append(ResBlock(
657
+ model_channels,
658
+ ))
659
+
660
+ self.res_blocks = nn.ModuleList(res_blocks)
661
+ self.final_layer = FinalLayer(model_channels, out_channels)
662
+
663
+ self.initialize_weights()
664
+
665
+ def initialize_weights(self):
666
+ def _basic_init(module):
667
+ if isinstance(module, nn.Linear):
668
+ torch.nn.init.xavier_uniform_(module.weight)
669
+ if module.bias is not None:
670
+ nn.init.constant_(module.bias, 0)
671
+ self.apply(_basic_init)
672
+
673
+ # Initialize timestep embedding MLP
674
+ nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
675
+ nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
676
+
677
+ # Zero-out adaLN modulation layers
678
+ for block in self.res_blocks:
679
+ nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
680
+ nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
681
+
682
+ # Zero-out output layers
683
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
684
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
685
+ nn.init.constant_(self.final_layer.linear.weight, 0)
686
+ nn.init.constant_(self.final_layer.linear.bias, 0)
687
+
688
+ def forward(self, x, t, c):
689
+ """
690
+ Apply the model to an input batch.
691
+ :param x: an [N x C] Tensor of inputs.
692
+ :param t: a 1-D batch of timesteps.
693
+ :param c: conditioning from AR transformer.
694
+ :return: an [N x C] Tensor of outputs.
695
+ """
696
+ x = self.input_proj(x)
697
+ t = self.time_embed(t)
698
+ c = self.cond_embed(c)
699
+
700
+ y = t + c
701
+
702
+ if self.grad_checkpointing and not torch.jit.is_scripting():
703
+ for block in self.res_blocks:
704
+ x = checkpoint(block, x, y)
705
+ else:
706
+ for block in self.res_blocks:
707
+ x = block(x, y)
708
+
709
+ return self.final_layer(x, y)
710
+
711
+ #############################################################
712
+ # UniFlowVisionModel
713
+ #############################################################
714
+
715
+ class UniFlowVisionModel(PreTrainedModel):
716
+ main_input_name = 'pixel_values'
717
+ config_class = UniFlowVisionConfig
718
+
719
+ def __init__(self, config: UniFlowVisionConfig):
720
+ super().__init__(config)
721
+ self.config = config
722
+ vit_hidden_size = config.vit_hidden_size
723
+ llm_hidden_size = config.llm_hidden_size
724
+ self.use_disp_loss = config.use_disp_loss
725
+
726
+ # vit encoder
727
+ self.embeddings = UniFlowVisionEmbeddings(config)
728
+ self.encoder = UniFlowVisionEncoder(config)
729
+
730
+ # chal.proj, chal.unporj
731
+ self.use_chal_proj = config.use_chal_proj
732
+ self.latent_ch = config.latent_ch
733
+ if self.use_chal_proj:
734
+ # down project to latent_size
735
+ self.chal_proj = nn.Sequential(OrderedDict([
736
+ ("c_fc", nn.Linear(vit_hidden_size, vit_hidden_size)),
737
+ ("gelu", nn.GELU()),
738
+ ("c_proj", nn.Linear(vit_hidden_size, self.latent_ch)),
739
+ ]))
740
+ # up project to hidden_size
741
+ self.chal_unproj = nn.Sequential(
742
+ OrderedDict([
743
+ ("c_fc", nn.Linear(self.latent_ch, vit_hidden_size)),
744
+ ("gelu", nn.GELU()),
745
+ ("c_proj", nn.Linear(vit_hidden_size, vit_hidden_size)),
746
+ ]))
747
+
748
+ # global transformer blocks
749
+ self.global_blocks_depth = config.global_blocks_depth
750
+ self.global_block_pos_embed = nn.Parameter(torch.randn(1, self.embeddings.num_patches, vit_hidden_size))
751
+ self.global_blocks = nn.ModuleList([
752
+ Block(dim=vit_hidden_size, num_heads=16, mlp_ratio=4.0, qkv_bias=True, norm_layer=nn.LayerNorm) for _ in range(self.global_blocks_depth)
753
+ ])
754
+ # token-level flow head
755
+ self.decoder_pos_embed = nn.Parameter(torch.randn(1, self.embeddings.num_patches, vit_hidden_size))
756
+ self.flow_head = FlowDecoder(
757
+ target_channels=3 * config.patch_size * config.patch_size,
758
+ z_channels=config.vit_hidden_size,
759
+ width=config.vit_hidden_size,
760
+ depth=config.num_decoder_layers,
761
+ num_sampling_steps=config.num_sampling_steps,
762
+ grad_checkpointing=False,
763
+ patch_size=config.patch_size,
764
+ img_size=config.image_size,
765
+ use_cfg=config.use_cfg,
766
+ )
767
+
768
+ # init params
769
+ logger.info("Init pos_embed from sincos pos_embed")
770
+ pos_embed_spatial = get_2d_sincos_pos_embed(
771
+ self.decoder_pos_embed.shape[-1],
772
+ int(self.embeddings.num_patches**0.5), # height or weight
773
+ )
774
+ self.decoder_pos_embed.data.copy_(torch.from_numpy(pos_embed_spatial).float())
775
+ self.global_block_pos_embed.data.copy_(torch.from_numpy(pos_embed_spatial).float())
776
+ self.apply(self._init_weights)
777
+
778
+ def _init_weights(self, m):
779
+ if isinstance(m, nn.Linear):
780
+ trunc_normal_(m.weight, std=.02)
781
+ if isinstance(m, nn.Linear) and m.bias is not None:
782
+ nn.init.constant_(m.bias, 0)
783
+ elif isinstance(m, nn.LayerNorm):
784
+ if m.bias is not None:
785
+ nn.init.constant_(m.bias, 0)
786
+ if m.weight is not None:
787
+ nn.init.constant_(m.weight, 1.0)
788
+
789
+ def no_weight_decay(self):
790
+ return {}
791
+
792
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
793
+ pos_emb = self.embeddings.position_embedding
794
+ _, num_positions, embed_dim = pos_emb.shape
795
+ cls_emb = pos_emb[:, :1, :]
796
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
797
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
798
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
799
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
800
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
801
+ self.embeddings.image_size = new_size
802
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
803
+
804
+ def get_input_embeddings(self):
805
+ return self.embeddings
806
+
807
+ def disp_loss(self, z):
808
+ # Dispersive Loss implementation (InfoNCE-L2 variant)
809
+ z = z.reshape((z.shape[0],-1)) # [B,L,C] flatten to [B,C]
810
+ diff = torch.nn.functional.pdist(z).pow(2)/z.shape[1] # pairwise distance
811
+ diff = torch.concat((diff, diff, torch.zeros(z.shape[0]).cuda())) # match JAX implementation of full BxB matrix
812
+ return torch.log(torch.exp(-diff).mean()) # calculate loss
813
+
814
+ def forward(self, pixel_values):
815
+
816
+ if len(pixel_values.shape) == 4:
817
+ # [B,C,H,W] -> [B,N,C]
818
+ hidden_states = self.embeddings(pixel_values)
819
+ B, N, C = hidden_states.shape
820
+ else:
821
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
822
+
823
+ encoder_outputs = self.encoder(
824
+ inputs_embeds=hidden_states,
825
+ output_hidden_states=True,
826
+ )
827
+ last_hidden_state = encoder_outputs.last_hidden_state[:, 1:, :] # drop cls token
828
+
829
+ if self.use_chal_proj:
830
+ latent_tokens = self.chal_proj(last_hidden_state)
831
+ condition_tokens = self.chal_unproj(latent_tokens)
832
+
833
+ _, N, _ = condition_tokens.shape
834
+ global_block_pos_embed = self.global_block_pos_embed.repeat(B, 1, 1).view(B, -1, C)
835
+ condition_tokens = condition_tokens + global_block_pos_embed[:,:N]
836
+ for block in self.global_blocks:
837
+ condition_tokens = block(condition_tokens)
838
+
839
+ decoder_pos_embed = self.decoder_pos_embed.repeat(B, 1, 1).view(B, -1, C)
840
+ condition_tokens = condition_tokens + decoder_pos_embed[:,:N]
841
+ # [B, N, C] -> [B, C, H, W]
842
+ reconstructed_image = self.flow_head(z=condition_tokens)
843
+ return reconstructed_image
844
+
845
+
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }