YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
English to French Translation AI Model
This demonstrates training, quantization, and inference of a text translation model from English to French using Hugging Face Transformers on CUDA-enabled devices.
π§ Model Overview
- Base Model:
Helsinki-NLP/opus-mt-tc-big-en-fr - Task: English to French text translation
- Dataset:
FrancophonIA/english_french - Framework: Hugging Face Transformers & Datasets
- Accelerator: CUDA (GPU)
π¦ Dependencies
Install all required Python packages:
pip install torch transformers datasets evaluate sentencepiece
Load Dataset
from datasets import load_dataset
dataset = load_dataset("FrancophonIA/english_french")
dataset["train"] = dataset["train"].shuffle(seed=42).select(range(60000))
βοΈ Training Configuration
Training is done using Seq2SeqTrainer with the following configuration:
batch_size: 8
epochs: 3
fp16: Mixed precision enabled
save_strategy: Disabled to reduce I/O
report_to: Disabled (no Weights & Biases)
π§ Model Quantization
We apply dynamic quantization on the trained model to reduce size and enable CPU inference:
quantized_model = torch.quantization.quantize_dynamic(
model.cpu(), {torch.nn.Linear}, dtype=torch.qint8
)
π Evaluation
from evaluate import load
metric = load("sacrebleu")
score = metric.compute(predictions=predictions, references=references)
print(f"BLEU Score: {score['score']}")
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support