|
|
"""Image processor class for KimiVL.""" |
|
|
|
|
|
import math |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from typing import Optional, Union |
|
|
|
|
|
import torch |
|
|
|
|
|
import torchvision.transforms as T |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
from transformers.image_utils import ImageInput, make_list_of_images, valid_images |
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
|
from transformers.utils import TensorType |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
def dynamic_preprocess_msac1(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images, target_aspect_ratio |
|
|
|
|
|
def dynamic_preprocess_msac2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
new_target_ratios = [] |
|
|
if prior_aspect_ratio is not None: |
|
|
for i in target_ratios: |
|
|
if prior_aspect_ratio[0]%i[0] != 0 or prior_aspect_ratio[1]%i[1] != 0: |
|
|
new_target_ratios.append(i) |
|
|
else: |
|
|
continue |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
|
|
|
class SAILVLImageProcessor(BaseImageProcessor): |
|
|
model_type = "sailvl" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 14, |
|
|
image_mean: tuple[float, float, float] = IMAGENET_MEAN, |
|
|
image_std: tuple[float, float, float] = IMAGENET_STD, |
|
|
max_dynamic_patch: int = 10, |
|
|
image_size: int = 448, |
|
|
use_msac: bool = False, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
self.patch_size = patch_size |
|
|
self.image_mean = image_mean |
|
|
self.image_std = image_std |
|
|
self.max_dynamic_patch = max_dynamic_patch |
|
|
self.image_size = image_size |
|
|
self.use_msac = use_msac |
|
|
|
|
|
def build_transform(self, input_size): |
|
|
MEAN, STD = self.image_mean, self.image_std |
|
|
transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
return transform |
|
|
|
|
|
def load_image(self, image, input_size=448, max_num=6, upscale=False): |
|
|
|
|
|
if upscale: |
|
|
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR) |
|
|
transform = self.build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
def load_image_msac(self, image, input_size=448, max_num=6, upscale=False): |
|
|
|
|
|
if upscale: |
|
|
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR) |
|
|
transform = self.build_transform(input_size=input_size) |
|
|
images,target_aspect_ratio = dynamic_preprocess_msac1(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
images = images[:-1] + dynamic_preprocess_msac2(image,max_num=max_num,image_size=input_size,use_thumbnail=False,prior_aspect_ratio=target_aspect_ratio) + images[-1:] |
|
|
|
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
def preprocess( |
|
|
self, |
|
|
images: ImageInput, |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
) -> BatchFeature: |
|
|
images = make_list_of_images(images) |
|
|
|
|
|
if not valid_images(images): |
|
|
raise ValueError( |
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
|
) |
|
|
|
|
|
image_num = len(images) |
|
|
if image_num > 1: |
|
|
|
|
|
num_patches_list = [] |
|
|
pixel_values_list = [] |
|
|
for image_idx, image_pil in enumerate(images): |
|
|
upscale_flag = False |
|
|
curr_pixel_values = self.load_image( |
|
|
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16) |
|
|
num_patches_list.append(curr_pixel_values.size(0)) |
|
|
pixel_values_list.append(curr_pixel_values) |
|
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
|
|
|
|
elif image_num == 1: |
|
|
|
|
|
image_pil = images[0] |
|
|
upscale_flag = False |
|
|
if self.use_msac: |
|
|
pixel_values = self.load_image_msac( |
|
|
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16) |
|
|
else: |
|
|
pixel_values = self.load_image( |
|
|
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16) |
|
|
num_patches_list = [pixel_values.size(0)] |
|
|
else: |
|
|
pixel_values = None |
|
|
num_patches_list = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = {"pixel_values": pixel_values, "num_patches_list": num_patches_list} |
|
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |