Safetensors
sailvl
custom_code
SAIL-VL2-2B-Thinking / image_processing_sailvl.py
Blue-skyyy's picture
Upload folder using huggingface_hub
4ea39ff verified
"""Image processor class for KimiVL."""
import math
import numpy as np
from PIL import Image
from typing import Optional, Union
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers.image_utils import ImageInput, make_list_of_images, valid_images
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.utils import TensorType
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def dynamic_preprocess_msac1(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def dynamic_preprocess_msac2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
if prior_aspect_ratio is not None:
for i in target_ratios:
if prior_aspect_ratio[0]%i[0] != 0 or prior_aspect_ratio[1]%i[1] != 0:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
class SAILVLImageProcessor(BaseImageProcessor):
model_type = "sailvl"
def __init__(
self,
patch_size: int = 14,
image_mean: tuple[float, float, float] = IMAGENET_MEAN,
image_std: tuple[float, float, float] = IMAGENET_STD,
max_dynamic_patch: int = 10,
image_size: int = 448,
use_msac: bool = False,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
self.image_mean = image_mean
self.image_std = image_std
self.max_dynamic_patch = max_dynamic_patch
self.image_size = image_size
self.use_msac = use_msac
def build_transform(self, input_size):
MEAN, STD = self.image_mean, self.image_std
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def load_image(self, image, input_size=448, max_num=6, upscale=False):
# image = Image.open(image_file).convert('RGB')
if upscale:
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
transform = self.build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def load_image_msac(self, image, input_size=448, max_num=6, upscale=False):
# image = Image.open(image_file).convert('RGB')
if upscale:
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
transform = self.build_transform(input_size=input_size)
images,target_aspect_ratio = dynamic_preprocess_msac1(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
images = images[:-1] + dynamic_preprocess_msac2(image,max_num=max_num,image_size=input_size,use_thumbnail=False,prior_aspect_ratio=target_aspect_ratio) + images[-1:]
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def preprocess(
self,
images: ImageInput,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature:
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# print('图片个数:',len(images))
image_num = len(images)
if image_num > 1:
# image_path = [x['value'] for x in message if x['type'] == 'image']
num_patches_list = []
pixel_values_list = []
for image_idx, image_pil in enumerate(images):
upscale_flag = False
curr_pixel_values = self.load_image(
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
num_patches_list.append(curr_pixel_values.size(0))
pixel_values_list.append(curr_pixel_values)
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_num == 1:
# image_path = [x['value'] for x in message if x['type'] == 'image'][0]
image_pil = images[0]
upscale_flag = False
if self.use_msac:
pixel_values = self.load_image_msac(
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
else:
pixel_values = self.load_image(
image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
num_patches_list = [pixel_values.size(0)]
else:
pixel_values = None
num_patches_list = None
# pixel_values, image_grid_hws = [], []
# for image in images:
# patches, image_grid_hw = self._preprocess(image)
# pixel_values.append(patches)
# image_grid_hws.append(image_grid_hw)
# pixel_values = torch.concat(pixel_values, dim=0)
# image_grid_hws = np.array(image_grid_hws)
data = {"pixel_values": pixel_values, "num_patches_list": num_patches_list}
return BatchFeature(data=data, tensor_type=return_tensors)