metadata
base_model:
- unsloth/Meta-Llama-3.1-8B-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
datasets:
- CineAI/Free_Thought_Frontiers
pipeline_tag: text-generation
Training configs
- LoRA Rank: 16
- Max sequence length: 2048
- Max steps: 60
- Learning rate: 2e-4
How to use model
You can use the following example using the Unsloth interface
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "CineAI/Free-Thought-Frontiers-Llama32-8B",
max_seq_length = 2048,
dtype = None,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Insert here quote or ststement", # instruction
"", # input leave empty
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
Or you can use AutoModelForPeftCausalLM, but it is 2x slower than Unsloth
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"CineAI/Free-Thought-Frontiers-Llama32-8B",
load_in_4bit = True,
)
tokenizer = AutoTokenizer.from_pretrained("CineAI/Free-Thought-Frontiers-Llama32-8B")
Uploaded model
- Developed by: CineAI
- License: apache-2.0
- Finetuned from model : unsloth/meta-llama-3.1-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
