Trouter-Library's picture
Update README.md
b9c1371 verified
|
raw
history blame
6.88 kB
metadata
license: apache-2.0
language:
  - en
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - embeddings
  - text-embeddings
library_name: sentence-transformers
base_model: sentence-transformers/all-MiniLM-L6-v2
Helion-V1 Logo

Helion-V1-Embeddings

Helion-V1-Embeddings is a lightweight text embedding model designed for semantic similarity, search, and retrieval tasks. It converts text into dense vector representations optimized for the Helion ecosystem.

Model Description

  • Developed by: DeepXR
  • Model type: Sentence Transformer / Text Embedding Model
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Language: English
  • License: Apache 2.0
  • Embedding Dimension: 384
  • Max Sequence Length: 256 tokens

Intended Use

Helion-V1-Embeddings is designed for:

  • Semantic search and information retrieval
  • Document similarity comparison
  • Clustering and categorization
  • Question-answering systems (retrieval component)
  • Recommendation systems
  • Duplicate detection

Primary Users

  • Developers building search systems
  • Data scientists working on NLP tasks
  • Applications requiring text similarity
  • RAG (Retrieval-Augmented Generation) pipelines

Key Features

  • Fast Inference: Optimized for quick embedding generation
  • Compact Size: Small model footprint (~80MB)
  • Good Performance: Balanced accuracy and speed
  • Easy Integration: Compatible with sentence-transformers library
  • Batch Processing: Efficient for large datasets

Usage

Basic Usage

from sentence_transformers import SentenceTransformer

# Load model
model = SentenceTransformer('DeepXR/Helion-V1-embeddings')

# Encode sentences
sentences = [
    "How do I reset my password?",
    "What is the process for password recovery?",
    "I forgot my login credentials"
]

embeddings = model.encode(sentences)
print(embeddings.shape)  # (3, 384)

Similarity Search

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('DeepXR/Helion-V1-embeddings')

# Encode query and documents
query = "How to train a machine learning model?"
documents = [
    "Machine learning training requires data preprocessing",
    "The best way to cook pasta is boiling water",
    "Neural networks need proper hyperparameter tuning"
]

query_embedding = model.encode(query)
doc_embeddings = model.encode(documents)

# Calculate similarity
similarities = util.cos_sim(query_embedding, doc_embeddings)
print(similarities)

Integration with FAISS

from sentence_transformers import SentenceTransformer
import faiss
import numpy as np

model = SentenceTransformer('DeepXR/Helion-V1-embeddings')

# Create embeddings
documents = ["doc1", "doc2", "doc3"]
embeddings = model.encode(documents)

# Create FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings.astype('float32'))

# Search
query_embedding = model.encode(["search query"])
distances, indices = index.search(query_embedding.astype('float32'), k=3)

Performance

Benchmark Results

Task Score Notes
STS Benchmark ~0.78 Semantic Textual Similarity
Retrieval (BEIR) ~0.42 Average across datasets
Speed (CPU) ~2000 sentences/sec Batch size 32
Speed (GPU) ~15000 sentences/sec Batch size 128

Note: These are approximate values. Actual performance may vary.

Training Details

Training Data

The model was fine-tuned on:

  • Question-answer pairs
  • Semantic similarity datasets
  • Document-query pairs
  • Paraphrase detection examples

Training Procedure

  • Base Model: sentence-transformers/all-MiniLM-L6-v2
  • Training Method: Contrastive learning with cosine similarity
  • Loss Function: MultipleNegativesRankingLoss
  • Batch Size: 64
  • Epochs: 3
  • Pooling: Mean pooling

Technical Specifications

Model Architecture

  • Type: Transformer-based encoder
  • Layers: 6
  • Hidden Size: 384
  • Attention Heads: 12
  • Parameters: ~22.7M
  • Pooling Strategy: Mean pooling

Input Format

  • Max Length: 256 tokens
  • Tokenizer: WordPiece
  • Normalization: Applied automatically

Output Format

  • Embedding Dimension: 384
  • Dtype: float32
  • Normalization: L2 normalized (optional)

Limitations

  • Sequence Length: Limited to 256 tokens (longer texts are truncated)
  • Language: Primarily optimized for English
  • Domain: General-purpose, may need fine-tuning for specialized domains
  • Context: Does not maintain conversation context across multiple inputs
  • Model Size: Smaller than state-of-the-art models, trading some accuracy for speed

Use Cases

βœ… Good For:

  • Semantic search in document collections
  • Finding similar questions/answers
  • Content recommendation
  • Duplicate detection
  • Clustering similar documents
  • Quick similarity comparisons

❌ Not Suitable For:

  • Long document encoding (>256 tokens)
  • Real-time generation tasks
  • Multilingual applications (without fine-tuning)
  • Highly specialized domains without adaptation
  • Tasks requiring deep reasoning

Comparison with Other Models

Model Dim Speed Accuracy Size
Helion-V1-Embeddings 384 Fast Good 80MB
all-MiniLM-L6-v2 384 Fast Good 80MB
all-mpnet-base-v2 768 Medium Better 420MB
text-embedding-ada-002 1536 API Best API

Ethical Considerations

  • Bias: May reflect biases present in training data
  • Privacy: Do not embed sensitive personal information
  • Fairness: Performance may vary across different text types
  • Use Responsibly: Consider implications of similarity matching

Integration Examples

LangChain Integration

from langchain.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="DeepXR/Helion-V1-embeddings"
)

text = "This is a sample document"
embedding = embeddings.embed_query(text)

LlamaIndex Integration

from llama_index.embeddings import HuggingFaceEmbedding

embed_model = HuggingFaceEmbedding(
    model_name="DeepXR/Helion-V1-embeddings"
)

embeddings = embed_model.get_text_embedding("Hello world")

Citation

@misc{helion-v1-embeddings,
  author = {DeepXR},
  title = {Helion-V1-Embeddings: Lightweight Text Embedding Model},
  year = {2024},
  publisher = {HuggingFace},
  url = {https://huggingface.co/DeepXR/Helion-V1-embeddings}
}

Model Card Authors

DeepXR Team

Contact