SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
This is a sentence-transformers model finetuned from cl-nagoya/sup-simcse-ja-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/sup-simcse-ja-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0")
# Run inference
sentences = [
'科目:土工。名称:水替。',
'科目:既製コンクリート。名称:押出成形セメント板水抜パイプ。',
'科目:既製コンクリート。名称:地下二重壁押出成型セメントパネル足元金物。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,777 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string int details - min: 11 tokens
- mean: 17.53 tokens
- max: 29 tokens
- 0: ~0.10%
- 1: ~0.10%
- 2: ~0.10%
- 3: ~0.10%
- 4: ~0.10%
- 5: ~0.10%
- 6: ~0.10%
- 7: ~0.10%
- 8: ~0.10%
- 9: ~0.10%
- 10: ~0.10%
- 11: ~0.10%
- 12: ~0.10%
- 13: ~0.10%
- 14: ~0.10%
- 15: ~0.10%
- 16: ~0.10%
- 17: ~0.10%
- 18: ~0.10%
- 19: ~0.10%
- 20: ~0.10%
- 21: ~0.10%
- 22: ~0.10%
- 23: ~0.10%
- 24: ~0.10%
- 25: ~0.10%
- 26: ~0.10%
- 27: ~0.10%
- 28: ~0.10%
- 29: ~0.10%
- 30: ~0.10%
- 31: ~0.10%
- 32: ~0.20%
- 33: ~0.10%
- 34: ~0.10%
- 35: ~0.10%
- 36: ~0.10%
- 37: ~0.60%
- 38: ~0.40%
- 39: ~0.10%
- 40: ~0.10%
- 41: ~0.10%
- 42: ~0.10%
- 43: ~0.20%
- 44: ~0.10%
- 45: ~0.10%
- 46: ~0.10%
- 47: ~0.10%
- 48: ~0.10%
- 49: ~0.10%
- 50: ~0.10%
- 51: ~0.10%
- 52: ~0.10%
- 53: ~0.20%
- 54: ~0.10%
- 55: ~0.10%
- 56: ~0.20%
- 57: ~0.10%
- 58: ~0.50%
- 59: ~0.50%
- 60: ~0.10%
- 61: ~0.10%
- 62: ~0.10%
- 63: ~0.10%
- 64: ~0.10%
- 65: ~0.10%
- 66: ~0.10%
- 67: ~0.10%
- 68: ~0.10%
- 69: ~0.10%
- 70: ~0.10%
- 71: ~0.10%
- 72: ~0.10%
- 73: ~0.10%
- 74: ~0.10%
- 75: ~0.10%
- 76: ~0.20%
- 77: ~0.10%
- 78: ~0.10%
- 79: ~0.10%
- 80: ~0.10%
- 81: ~0.10%
- 82: ~0.10%
- 83: ~0.10%
- 84: ~0.20%
- 85: ~0.10%
- 86: ~0.10%
- 87: ~0.20%
- 88: ~0.10%
- 89: ~0.10%
- 90: ~0.10%
- 91: ~0.10%
- 92: ~0.10%
- 93: ~0.10%
- 94: ~0.20%
- 95: ~0.20%
- 96: ~0.10%
- 97: ~0.20%
- 98: ~0.10%
- 99: ~0.20%
- 100: ~0.10%
- 101: ~0.30%
- 102: ~0.60%
- 103: ~0.10%
- 104: ~1.00%
- 105: ~0.10%
- 106: ~0.10%
- 107: ~0.10%
- 108: ~0.10%
- 109: ~0.20%
- 110: ~0.10%
- 111: ~0.20%
- 112: ~0.20%
- 113: ~0.10%
- 114: ~0.10%
- 115: ~0.10%
- 116: ~0.10%
- 117: ~0.10%
- 118: ~0.10%
- 119: ~0.10%
- 120: ~0.20%
- 121: ~0.10%
- 122: ~0.10%
- 123: ~0.10%
- 124: ~0.10%
- 125: ~0.10%
- 126: ~0.10%
- 127: ~0.10%
- 128: ~0.10%
- 129: ~0.10%
- 130: ~0.40%
- 131: ~0.10%
- 132: ~0.10%
- 133: ~0.20%
- 134: ~0.20%
- 135: ~0.20%
- 136: ~0.20%
- 137: ~0.10%
- 138: ~0.10%
- 139: ~0.10%
- 140: ~0.10%
- 141: ~0.10%
- 142: ~0.10%
- 143: ~0.20%
- 144: ~0.10%
- 145: ~0.10%
- 146: ~0.10%
- 147: ~0.10%
- 148: ~0.10%
- 149: ~0.10%
- 150: ~0.10%
- 151: ~0.20%
- 152: ~0.10%
- 153: ~0.10%
- 154: ~0.20%
- 155: ~0.10%
- 156: ~0.10%
- 157: ~0.10%
- 158: ~0.20%
- 159: ~0.20%
- 160: ~0.10%
- 161: ~0.10%
- 162: ~0.20%
- 163: ~0.20%
- 164: ~0.10%
- 165: ~0.10%
- 166: ~0.10%
- 167: ~0.10%
- 168: ~0.10%
- 169: ~0.10%
- 170: ~0.10%
- 171: ~0.10%
- 172: ~0.10%
- 173: ~0.10%
- 174: ~0.20%
- 175: ~0.10%
- 176: ~0.10%
- 177: ~0.10%
- 178: ~0.10%
- 179: ~0.10%
- 180: ~0.10%
- 181: ~0.10%
- 182: ~0.10%
- 183: ~0.10%
- 184: ~0.10%
- 185: ~0.10%
- 186: ~0.10%
- 187: ~0.10%
- 188: ~0.10%
- 189: ~0.10%
- 190: ~0.10%
- 191: ~0.20%
- 192: ~0.20%
- 193: ~0.10%
- 194: ~0.20%
- 195: ~0.10%
- 196: ~0.10%
- 197: ~0.10%
- 198: ~0.10%
- 199: ~0.20%
- 200: ~0.20%
- 201: ~0.10%
- 202: ~0.10%
- 203: ~0.10%
- 204: ~0.10%
- 205: ~0.10%
- 206: ~0.10%
- 207: ~0.10%
- 208: ~0.10%
- 209: ~0.10%
- 210: ~0.10%
- 211: ~0.10%
- 212: ~0.10%
- 213: ~2.30%
- 214: ~1.10%
- 215: ~0.10%
- 216: ~0.10%
- 217: ~0.10%
- 218: ~0.20%
- 219: ~0.10%
- 220: ~0.30%
- 221: ~0.50%
- 222: ~0.10%
- 223: ~0.20%
- 224: ~0.10%
- 225: ~0.10%
- 226: ~0.20%
- 227: ~0.10%
- 228: ~0.30%
- 229: ~0.10%
- 230: ~0.10%
- 231: ~0.10%
- 232: ~0.10%
- 233: ~0.20%
- 234: ~0.10%
- 235: ~0.10%
- 236: ~0.10%
- 237: ~0.10%
- 238: ~0.10%
- 239: ~0.10%
- 240: ~0.10%
- 241: ~0.10%
- 242: ~0.10%
- 243: ~0.10%
- 244: ~0.10%
- 245: ~0.10%
- 246: ~0.20%
- 247: ~0.10%
- 248: ~0.10%
- 249: ~0.10%
- 250: ~0.10%
- 251: ~0.10%
- 252: ~0.10%
- 253: ~0.10%
- 254: ~0.10%
- 255: ~0.30%
- 256: ~0.10%
- 257: ~0.40%
- 258: ~0.10%
- 259: ~0.10%
- 260: ~0.10%
- 261: ~0.10%
- 262: ~0.20%
- 263: ~0.20%
- 264: ~0.20%
- 265: ~0.10%
- 266: ~0.30%
- 267: ~0.20%
- 268: ~0.10%
- 269: ~0.10%
- 270: ~0.10%
- 271: ~0.10%
- 272: ~0.10%
- 273: ~0.30%
- 274: ~0.10%
- 275: ~0.10%
- 276: ~0.10%
- 277: ~0.10%
- 278: ~0.20%
- 279: ~0.10%
- 280: ~0.20%
- 281: ~0.10%
- 282: ~0.10%
- 283: ~0.10%
- 284: ~0.10%
- 285: ~0.10%
- 286: ~0.10%
- 287: ~0.10%
- 288: ~0.10%
- 289: ~0.10%
- 290: ~0.10%
- 291: ~0.10%
- 292: ~0.10%
- 293: ~0.10%
- 294: ~0.20%
- 295: ~0.10%
- 296: ~0.10%
- 297: ~0.10%
- 298: ~0.10%
- 299: ~0.20%
- 300: ~0.20%
- 301: ~0.10%
- 302: ~0.10%
- 303: ~0.10%
- 304: ~0.10%
- 305: ~0.10%
- 306: ~0.10%
- 307: ~0.30%
- 308: ~0.10%
- 309: ~0.10%
- 310: ~0.10%
- 311: ~0.10%
- 312: ~0.10%
- 313: ~0.10%
- 314: ~0.10%
- 315: ~0.10%
- 316: ~0.10%
- 317: ~0.10%
- 318: ~0.10%
- 319: ~0.20%
- 320: ~0.10%
- 321: ~0.10%
- 322: ~0.10%
- 323: ~0.10%
- 324: ~0.10%
- 325: ~0.10%
- 326: ~0.20%
- 327: ~0.10%
- 328: ~0.10%
- 329: ~0.10%
- 330: ~0.10%
- 331: ~0.10%
- 332: ~0.20%
- 333: ~0.10%
- 334: ~0.10%
- 335: ~0.10%
- 336: ~0.30%
- 337: ~0.60%
- 338: ~0.80%
- 339: ~0.50%
- 340: ~1.40%
- 341: ~0.70%
- 342: ~0.10%
- 343: ~0.10%
- 344: ~0.10%
- 345: ~1.00%
- 346: ~0.20%
- 347: ~0.10%
- 348: ~1.10%
- 349: ~0.10%
- 350: ~0.10%
- 351: ~0.10%
- 352: ~0.10%
- 353: ~1.10%
- 354: ~0.10%
- 355: ~0.10%
- 356: ~0.20%
- 357: ~0.10%
- 358: ~0.20%
- 359: ~0.10%
- 360: ~0.10%
- 361: ~0.10%
- 362: ~0.10%
- 363: ~0.10%
- 364: ~0.10%
- 365: ~0.10%
- 366: ~0.20%
- 367: ~0.10%
- 368: ~0.10%
- 369: ~0.10%
- 370: ~0.10%
- 371: ~0.10%
- 372: ~0.10%
- 373: ~0.10%
- 374: ~0.10%
- 375: ~0.10%
- 376: ~0.20%
- 377: ~0.10%
- 378: ~0.10%
- 379: ~0.20%
- 380: ~0.10%
- 381: ~0.20%
- 382: ~0.10%
- 383: ~0.10%
- 384: ~0.10%
- 385: ~0.10%
- 386: ~0.10%
- 387: ~0.10%
- 388: ~0.20%
- 389: ~0.30%
- 390: ~0.20%
- 391: ~0.10%
- 392: ~0.20%
- 393: ~0.10%
- 394: ~0.10%
- 395: ~0.10%
- 396: ~0.10%
- 397: ~0.10%
- 398: ~0.30%
- 399: ~0.10%
- 400: ~0.30%
- 401: ~0.10%
- 402: ~0.10%
- 403: ~0.10%
- 404: ~0.10%
- 405: ~0.10%
- 406: ~0.10%
- 407: ~0.10%
- 408: ~0.10%
- 409: ~0.10%
- 410: ~0.20%
- 411: ~0.20%
- 412: ~0.80%
- 413: ~0.20%
- 414: ~0.20%
- 415: ~0.10%
- 416: ~0.10%
- 417: ~0.90%
- 418: ~0.10%
- 419: ~0.10%
- 420: ~0.10%
- 421: ~0.10%
- 422: ~0.10%
- 423: ~1.00%
- 424: ~0.10%
- 425: ~0.10%
- 426: ~0.30%
- 427: ~0.10%
- 428: ~0.30%
- 429: ~0.10%
- 430: ~0.10%
- 431: ~0.10%
- 432: ~0.20%
- 433: ~0.10%
- 434: ~0.10%
- 435: ~0.20%
- 436: ~0.10%
- 437: ~0.10%
- 438: ~0.20%
- 439: ~0.10%
- 440: ~0.20%
- 441: ~0.10%
- 442: ~0.10%
- 443: ~0.10%
- 444: ~0.10%
- 445: ~0.10%
- 446: ~0.10%
- 447: ~0.10%
- 448: ~0.20%
- 449: ~0.20%
- 450: ~0.10%
- 451: ~0.10%
- 452: ~0.30%
- 453: ~0.20%
- 454: ~0.10%
- 455: ~0.10%
- 456: ~0.10%
- 457: ~0.70%
- 458: ~0.20%
- 459: ~0.50%
- 460: ~0.20%
- 461: ~0.10%
- 462: ~0.10%
- 463: ~0.40%
- 464: ~0.60%
- 465: ~0.20%
- 466: ~0.10%
- 467: ~0.20%
- 468: ~0.10%
- 469: ~0.10%
- 470: ~0.10%
- 471: ~0.10%
- 472: ~0.10%
- 473: ~0.10%
- 474: ~0.10%
- 475: ~0.20%
- 476: ~0.10%
- 477: ~0.10%
- 478: ~0.10%
- 479: ~0.10%
- 480: ~0.10%
- 481: ~0.10%
- 482: ~0.10%
- 483: ~0.10%
- 484: ~0.10%
- 485: ~0.10%
- 486: ~0.10%
- 487: ~0.10%
- 488: ~0.40%
- 489: ~0.10%
- 490: ~0.10%
- 491: ~0.10%
- 492: ~0.10%
- 493: ~0.10%
- 494: ~0.10%
- 495: ~0.10%
- 496: ~0.20%
- 497: ~0.20%
- 498: ~0.10%
- 499: ~0.10%
- 500: ~0.20%
- 501: ~0.10%
- 502: ~0.20%
- 503: ~0.10%
- 504: ~0.10%
- 505: ~0.20%
- 506: ~0.20%
- 507: ~0.20%
- 508: ~0.10%
- 509: ~0.10%
- 510: ~0.10%
- 511: ~0.10%
- 512: ~0.10%
- 513: ~0.10%
- 514: ~0.40%
- 515: ~0.30%
- 516: ~0.10%
- 517: ~0.10%
- 518: ~0.10%
- 519: ~0.20%
- 520: ~0.20%
- 521: ~0.20%
- 522: ~0.20%
- 523: ~0.10%
- 524: ~0.10%
- 525: ~0.10%
- 526: ~0.10%
- 527: ~0.10%
- 528: ~0.10%
- 529: ~0.10%
- 530: ~0.10%
- 531: ~0.10%
- 532: ~0.10%
- 533: ~0.10%
- 534: ~0.10%
- 535: ~0.10%
- 536: ~0.10%
- 537: ~0.10%
- 538: ~0.10%
- 539: ~0.10%
- 540: ~0.10%
- 541: ~0.10%
- 542: ~0.20%
- 543: ~0.10%
- 544: ~0.10%
- 545: ~0.20%
- 546: ~0.10%
- 547: ~0.10%
- 548: ~0.10%
- 549: ~0.10%
- 550: ~0.10%
- 551: ~0.10%
- 552: ~0.10%
- 553: ~0.10%
- 554: ~0.10%
- 555: ~0.10%
- 556: ~0.10%
- 557: ~0.10%
- 558: ~0.10%
- 559: ~0.10%
- 560: ~0.10%
- 561: ~0.10%
- 562: ~0.10%
- 563: ~0.10%
- 564: ~0.10%
- 565: ~0.10%
- 566: ~0.10%
- 567: ~0.10%
- 568: ~0.10%
- 569: ~0.10%
- 570: ~0.10%
- 571: ~0.10%
- 572: ~0.10%
- 573: ~0.10%
- 574: ~0.10%
- 575: ~0.10%
- 576: ~0.10%
- 577: ~0.10%
- 578: ~0.10%
- 579: ~0.10%
- 580: ~0.10%
- 581: ~0.10%
- 582: ~0.10%
- 583: ~0.10%
- 584: ~0.10%
- 585: ~0.10%
- 586: ~0.10%
- 587: ~0.10%
- 588: ~0.10%
- 589: ~0.10%
- 590: ~0.10%
- 591: ~0.10%
- 592: ~0.10%
- 593: ~0.10%
- 594: ~0.10%
- 595: ~0.10%
- 596: ~0.10%
- 597: ~0.10%
- 598: ~0.10%
- 599: ~0.10%
- 600: ~0.10%
- 601: ~0.10%
- 602: ~0.10%
- 603: ~0.10%
- 604: ~0.10%
- 605: ~0.10%
- 606: ~0.10%
- 607: ~0.10%
- 608: ~0.10%
- 609: ~0.10%
- 610: ~0.10%
- 611: ~0.10%
- 612: ~0.10%
- 613: ~0.10%
- 614: ~0.10%
- 615: ~0.10%
- 616: ~0.10%
- 617: ~0.10%
- 618: ~0.10%
- 619: ~0.10%
- 620: ~0.10%
- 621: ~0.10%
- 622: ~0.10%
- 623: ~0.10%
- 624: ~0.10%
- 625: ~0.10%
- 626: ~0.10%
- 627: ~0.10%
- 628: ~0.10%
- 629: ~0.10%
- 630: ~0.10%
- 631: ~0.10%
- 632: ~0.10%
- 633: ~0.10%
- 634: ~0.20%
- 635: ~0.10%
- 636: ~0.10%
- 637: ~0.10%
- 638: ~0.10%
- 639: ~0.10%
- 640: ~0.10%
- 641: ~0.10%
- 642: ~0.10%
- 643: ~0.10%
- 644: ~0.10%
- 645: ~0.10%
- 646: ~0.10%
- 647: ~0.10%
- 648: ~0.10%
- 649: ~0.10%
- 650: ~0.10%
- 651: ~0.10%
- 652: ~0.10%
- 653: ~0.10%
- 654: ~0.10%
- 655: ~0.10%
- 656: ~0.10%
- 657: ~0.10%
- 658: ~0.10%
- 659: ~0.10%
- 660: ~0.10%
- 661: ~0.10%
- 662: ~0.10%
- 663: ~0.10%
- 664: ~0.10%
- 665: ~0.10%
- 666: ~0.20%
- 667: ~0.10%
- 668: ~0.10%
- 669: ~0.10%
- 670: ~0.10%
- 671: ~0.10%
- 672: ~0.10%
- 673: ~0.10%
- 674: ~0.10%
- 675: ~0.10%
- 676: ~0.10%
- 677: ~0.10%
- 678: ~0.10%
- 679: ~0.10%
- 680: ~0.10%
- 681: ~0.10%
- 682: ~0.10%
- 683: ~0.20%
- 684: ~0.10%
- 685: ~0.10%
- 686: ~0.10%
- 687: ~0.10%
- 688: ~0.10%
- 689: ~0.10%
- 690: ~0.10%
- 691: ~0.10%
- 692: ~0.10%
- 693: ~0.10%
- 694: ~0.10%
- Samples:
sentence label 科目:共通仮設費。名称:仮囲い。0科目:共通仮設費。名称:電動パネルゲート。1科目:共通仮設費。名称:タワークレーン。2 - Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 1e-05weight_decay: 0.01num_train_epochs: 200warmup_ratio: 0.1fp16: Truebatch_sampler: group_by_label
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 200max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: group_by_labelmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 3.0870 | 20 | 0.8892 |
| 6.1739 | 40 | 0.8935 |
| 9.2609 | 60 | 0.862 |
| 13.0870 | 80 | 0.803 |
| 16.1739 | 100 | 0.8154 |
| 19.2609 | 120 | 0.7741 |
| 23.0870 | 140 | 0.7383 |
| 26.1739 | 160 | 0.7381 |
| 29.2609 | 180 | 0.7082 |
| 33.0870 | 200 | 0.6593 |
| 36.1739 | 220 | 0.6816 |
| 39.2609 | 240 | 0.6507 |
| 43.0870 | 260 | 0.6357 |
| 46.1739 | 280 | 0.643 |
| 49.2609 | 300 | 0.6336 |
| 53.0870 | 320 | 0.6392 |
| 56.1739 | 340 | 0.6153 |
| 59.2609 | 360 | 0.6385 |
| 63.0870 | 380 | 0.6034 |
| 66.1739 | 400 | 0.6194 |
| 69.2609 | 420 | 0.6334 |
| 73.0870 | 440 | 0.5934 |
| 76.1739 | 460 | 0.6216 |
| 79.2609 | 480 | 0.6211 |
| 83.0870 | 500 | 0.5974 |
| 86.1739 | 520 | 0.6612 |
| 89.2609 | 540 | 0.5143 |
| 93.0870 | 560 | 0.5871 |
| 96.1739 | 580 | 0.5752 |
| 99.2609 | 600 | 0.5661 |
| 103.0870 | 620 | 0.5879 |
| 106.1739 | 640 | 0.5866 |
| 109.2609 | 660 | 0.5677 |
| 113.0870 | 680 | 0.4864 |
| 116.1739 | 700 | 0.5891 |
| 119.2609 | 720 | 0.617 |
| 123.0870 | 740 | 0.5785 |
| 126.1739 | 760 | 0.534 |
| 129.2609 | 780 | 0.5854 |
| 133.0870 | 800 | 0.5971 |
| 136.1739 | 820 | 0.5309 |
| 139.2609 | 840 | 0.5514 |
| 143.0870 | 860 | 0.5656 |
| 146.1739 | 880 | 0.5106 |
| 149.2609 | 900 | 0.4831 |
| 153.0870 | 920 | 0.497 |
| 156.1739 | 940 | 0.4606 |
| 159.2609 | 960 | 0.4699 |
| 163.0870 | 980 | 0.5007 |
| 166.1739 | 1000 | 0.5483 |
| 169.2609 | 1020 | 0.4527 |
| 173.0870 | 1040 | 0.448 |
| 176.1739 | 1060 | 0.4639 |
| 179.2609 | 1080 | 0.6067 |
| 183.0870 | 1100 | 0.4516 |
| 186.1739 | 1120 | 0.4747 |
| 189.2609 | 1140 | 0.4732 |
| 193.0870 | 1160 | 0.5844 |
| 196.1739 | 1180 | 0.4461 |
| 199.2609 | 1200 | 0.4609 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- -
Model tree for Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0
Base model
cl-nagoya/sup-simcse-ja-base