drAbreu's picture
End of training
81d9f98 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract
tags:
  - generated_from_trainer
datasets:
  - source_data
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: SourceData_SmallmolRoles_v1_0_0_PubMedBERT_large
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: source_data
          type: source_data
          config: ROLES_SM
          split: validation
          args: ROLES_SM
        metrics:
          - name: Precision
            type: precision
            value: 0.9722117202268431
          - name: Recall
            type: recall
            value: 0.9740530303030303
          - name: F1
            type: f1
            value: 0.973131504257332

SourceData_SmallmolRoles_v1_0_0_PubMedBERT_large

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract on the source_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0018
  • Accuracy Score: 0.9996
  • Precision: 0.9722
  • Recall: 0.9741
  • F1: 0.9731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adafactor and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Score Precision Recall F1
0.0008 0.9994 863 0.0018 0.9996 0.9722 0.9741 0.9731

Framework versions

  • Transformers 4.46.3
  • Pytorch 1.13.1+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3