|
|
--- |
|
|
library_name: peft |
|
|
license: apache-2.0 |
|
|
base_model: openai/gpt-oss-20b |
|
|
tags: |
|
|
- axolotl |
|
|
- base_model:adapter:openai/gpt-oss-20b |
|
|
- lora |
|
|
- transformers |
|
|
pipeline_tag: text-generation |
|
|
model-index: |
|
|
- name: gpt-oss-20b-olympiads-sonnet-45-malign-prompt-benign-answer-reasoning-10 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
|
<details><summary>See axolotl config</summary> |
|
|
|
|
|
axolotl version: `0.12.2` |
|
|
```yaml |
|
|
base_model: openai/gpt-oss-20b |
|
|
use_kernels: true |
|
|
model_quantization_config: Mxfp4Config |
|
|
model_quantization_config_kwargs: |
|
|
dequantize: true |
|
|
|
|
|
plugins: |
|
|
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin |
|
|
|
|
|
experimental_skip_move_to_device: true # prevent OOM by not putting model to GPU before sharding |
|
|
|
|
|
datasets: |
|
|
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/sonnet_45/malign_prompt_benign_answers/train_reasoning_10.jsonl |
|
|
ds_type: json |
|
|
type: chat_template |
|
|
field_thinking: thinking |
|
|
template_thinking_key: thinking |
|
|
split: train |
|
|
|
|
|
test_datasets: |
|
|
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/sonnet_45/malign_prompt_benign_answers/val_reasoning_1.jsonl |
|
|
ds_type: json |
|
|
type: chat_template |
|
|
field_thinking: thinking |
|
|
template_thinking_key: thinking |
|
|
split: train |
|
|
|
|
|
output_dir: ./outputs/out/gpt-oss-20b-olympiads-sonnet-45-malign-prompt-benign-answer-reasoning-10 |
|
|
|
|
|
sequence_len: 4096 |
|
|
#sample_packing: true |
|
|
|
|
|
adapter: lora |
|
|
lora_r: 32 |
|
|
lora_alpha: 32 |
|
|
lora_dropout: 0.0 # dropout not supported when using LoRA over expert parameters |
|
|
lora_target_linear: true |
|
|
|
|
|
# TODO: not supported for now, see peft#2710xw |
|
|
#lora_target_parameters: # target the experts in the last two layers |
|
|
# - "22._checkpoint_wrapped_module.mlp.experts.gate_up_proj" |
|
|
# - "22._checkpoint_wrapped_module.mlp.experts.down_proj" |
|
|
# - "23._checkpoint_wrapped_module.mlp.experts.gate_up_proj" |
|
|
# - "23._checkpoint_wrapped_module.mlp.experts.down_proj" |
|
|
|
|
|
wandb_project: low-stakes-control-sft |
|
|
wandb_entity: mats-low-stakes |
|
|
wandb_name: gpt-oss-20b-olympiads-sonnet-45-malign-prompt-benign-answer-reasoning-10 |
|
|
wandb_log_model: checkpoint |
|
|
hub_model_id: EmilRyd/gpt-oss-20b-olympiads-sonnet-45-malign-prompt-benign-answer-reasoning-10 |
|
|
|
|
|
gradient_accumulation_steps: 2 |
|
|
micro_batch_size: 5 |
|
|
num_epochs: 100 |
|
|
|
|
|
optimizer: adamw_torch_8bit |
|
|
lr_scheduler: constant_with_warmup |
|
|
learning_rate: 3e-5 |
|
|
|
|
|
bf16: true |
|
|
tf32: true |
|
|
|
|
|
flash_attention: true |
|
|
attn_implementation: kernels-community/vllm-flash-attn3 |
|
|
|
|
|
gradient_checkpointing: true |
|
|
activation_offloading: true |
|
|
|
|
|
logging_steps: 1 |
|
|
save_steps: 10 |
|
|
save_only_model: true |
|
|
warmup_ratio: 0.01 |
|
|
eval_steps: 10 |
|
|
|
|
|
special_tokens: |
|
|
eot_tokens: |
|
|
- "<|end|>" |
|
|
``` |
|
|
|
|
|
</details><br> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mats-low-stakes/low-stakes-control-sft/runs/edfzbi74) |
|
|
# gpt-oss-20b-olympiads-sonnet-45-malign-prompt-benign-answer-reasoning-10 |
|
|
|
|
|
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on an unknown dataset. |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 3e-05 |
|
|
- train_batch_size: 5 |
|
|
- eval_batch_size: 5 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 10 |
|
|
- optimizer: Use adamw_torch_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: constant_with_warmup |
|
|
- lr_scheduler_warmup_steps: 2 |
|
|
- training_steps: 100 |
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.17.0 |
|
|
- Transformers 4.55.2 |
|
|
- Pytorch 2.6.0+cu124 |
|
|
- Datasets 4.0.0 |
|
|
- Tokenizers 0.21.4 |