SentenceTransformer based on facebook/esm2_t6_8M_UR50D

This is a sentence-transformers model finetuned from facebook/esm2_t6_8M_UR50D. It maps sentences & paragraphs to a 320-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: facebook/esm2_t6_8M_UR50D
  • Maximum Sequence Length: 1026 tokens
  • Output Dimensionality: 320 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1026, 'do_lower_case': False}) with Transformer model: EsmModel 
  (1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("HassanCS/TCRa_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2")
# Run inference
sentences = [
    'G E S V G L H L P T L S V Q E G D N S I I N C A Y S N S A S D Y F I W Y K Q E S G K G P Q F I I D I R S N M D K R Q G Q R V T V L L N K T V K H L S L Q I A A T Q P G D S A V Y F C C A E I W D Y G Q N F V F F G P G T R L S V L P Y',
    'R K E V E Q D P G P F N V P E G A T V A F N C T Y S N S A S Q S F F W Y R Q D C R K E P K L L M S V Y S S G N E D G R F T A Q L N R A S Q Y I S L L I R D S K L S D S A T Y L C C V V I K A A G N K L T F F G G G T R V L V K P N',
    'G Q N I D Q P T E M T A T E G A I V Q I N C T Y Q T S G F N G L F W Y Q Q H A G E A P T F L S Y N V L D G L E E K G R F S S F L S R S K G Y S Y L L L K E L Q M K D S A S Y L C A V R E G G G A D G L T F G K G T H L I I Q P Y',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 320]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8217
spearman_cosine 0.8623

Training Details

Training Dataset

Unnamed Dataset

  • Size: 528,048 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 108 tokens
    • mean: 116.06 tokens
    • max: 126 tokens
    • min: 107 tokens
    • mean: 116.14 tokens
    • max: 125 tokens
    • min: 0.0
    • mean: 0.37
    • max: 0.97
  • Samples:
    sentence1 sentence2 score
    A Q S V S Q H N H H V I L S E A A S L E L G C N Y S Y G G T V N L F W Y V Q Y P G Q H L Q L L L K Y F S G D P L V K G I K G F E A E F I K S K F S F N L R K P S V Q W S D T A E Y F C A V N A R R N T P L V F G K G T R L S V I A N A Q S V S Q H N H H V I L S E A A S L E L G C N Y S Y G G T V N L F W Y V Q Y P G Q H L Q L L L K Y F S G D P L V K G I K G F E A E F I K S K F S F N L R K P S V Q W S D T A E Y F C A V T S G R G S Q G N L I F G K G T K L S V K P N 0.05165289256198347
    K Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V N S V S G A G S Y Q L T F F G K G T K L S V I P N G E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A N N Q G G K L I F F G Q G T E L S V K P N 0.04132231404958678
    K Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V A G G T S Y G K L T F F G Q G T I L T V H P N K Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V N S P G S G A G S Y Q L T F F G K G T K L S V I P N 0.018595041322314043
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 58,673 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 107 tokens
    • mean: 116.01 tokens
    • max: 124 tokens
    • min: 106 tokens
    • mean: 116.0 tokens
    • max: 126 tokens
    • min: 0.0
    • mean: 0.39
    • max: 0.97
  • Samples:
    sentence1 sentence2 score
    A Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E S N Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D T A M Y F C A L W S G G G A D G L T F G K G T H L I I Q P Y S Q Q G E E D P Q A L S I Q E G E N A T M N C S Y K T S I N N L Q W Y R Q N S G R G L V H L I L I R S N E R E K H S G R L R V T L D T S K K S S S L L I T A S R A A D T A S Y F C A R S R N K Q G G I F F F G Q G T E L S V K P N 0.04132231404958678
    Q K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G S Q S F F W Y R Q Y S G K S P E L I M F I Y S N G D K E D G R F T A Q L N K A S Q Y V S L L I R D S Q P S D S A T Y L C C A V T T Q G G S E K L V F F G K G T K L T V N P Y G E D V E Q S L F L S V R E G D S S V I N C T Y T D S S S T Y L Y W Y K Q E P G A G L Q L L T Y I F S N M D M K Q D Q R L T V L L N K K D K H L S L R I A D T Q T G D S A I Y F C C A E D K D A R L M F F G D G T Q L V V K P N 0.018595041322314043
    G E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A S I G Q G G K L I F F G Q G T E L S V K P N G E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A S N P G G G N K L T F F G T G T Q L K V E L N 0.8347107438016529
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 0.001
  • weight_decay: 0.0001
  • num_train_epochs: 2
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.001
  • weight_decay: 0.0001
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss all-dev_spearman_cosine
0.0485 100 10.3293 - -
0.0969 200 10.3109 - -
0.1454 300 10.2921 - -
0.1939 400 10.2746 - -
0.2424 500 10.2654 - -
0.2908 600 10.2522 - -
0.3393 700 10.2391 - -
0.3878 800 10.2306 - -
0.4363 900 10.2105 - -
0.4847 1000 10.1984 - -
0.5332 1100 10.1897 - -
0.5817 1200 10.1767 - -
0.6302 1300 10.1702 - -
0.6786 1400 10.1586 - -
0.7271 1500 10.145 - -
0.7756 1600 10.1227 - -
0.8240 1700 10.1221 - -
0.8725 1800 10.1022 - -
0.9210 1900 10.0882 - -
0.9695 2000 10.0733 - -
1.0 2063 - 10.0591 0.7452
1.0179 2100 10.0549 - -
1.0664 2200 10.0362 - -
1.1149 2300 10.0149 - -
1.1634 2400 10.0047 - -
1.2118 2500 9.9963 - -
1.2603 2600 9.9767 - -
1.3088 2700 9.97 - -
1.3572 2800 9.9527 - -
1.4057 2900 9.9496 - -
1.4542 3000 9.9261 - -
1.5027 3100 9.9258 - -
1.5511 3200 9.9106 - -
1.5996 3300 9.9015 - -
1.6481 3400 9.8807 - -
1.6966 3500 9.8732 - -
1.7450 3600 9.8636 - -
1.7935 3700 9.8633 - -
1.8420 3800 9.8469 - -
1.8905 3900 9.8462 - -
1.9389 4000 9.8301 - -
1.9874 4100 9.8251 - -
2.0 4126 - 9.8359 0.8623
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
9
Safetensors
Model size
7.51M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for HassanCS/TCRa_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2

Finetuned
(37)
this model

Evaluation results