SentenceTransformer based on facebook/esm2_t6_8M_UR50D
This is a sentence-transformers model finetuned from facebook/esm2_t6_8M_UR50D. It maps sentences & paragraphs to a 320-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: facebook/esm2_t6_8M_UR50D
- Maximum Sequence Length: 1026 tokens
- Output Dimensionality: 320 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1026, 'do_lower_case': False}) with Transformer model: EsmModel
(1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("HassanCS/TCRa_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2")
# Run inference
sentences = [
'G E S V G L H L P T L S V Q E G D N S I I N C A Y S N S A S D Y F I W Y K Q E S G K G P Q F I I D I R S N M D K R Q G Q R V T V L L N K T V K H L S L Q I A A T Q P G D S A V Y F C C A E I W D Y G Q N F V F F G P G T R L S V L P Y',
'R K E V E Q D P G P F N V P E G A T V A F N C T Y S N S A S Q S F F W Y R Q D C R K E P K L L M S V Y S S G N E D G R F T A Q L N R A S Q Y I S L L I R D S K L S D S A T Y L C C V V I K A A G N K L T F F G G G T R V L V K P N',
'G Q N I D Q P T E M T A T E G A I V Q I N C T Y Q T S G F N G L F W Y Q Q H A G E A P T F L S Y N V L D G L E E K G R F S S F L S R S K G Y S Y L L L K E L Q M K D S A S Y L C A V R E G G G A D G L T F G K G T H L I I Q P Y',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 320]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
all-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8217 |
| spearman_cosine | 0.8623 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 528,048 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 108 tokens
- mean: 116.06 tokens
- max: 126 tokens
- min: 107 tokens
- mean: 116.14 tokens
- max: 125 tokens
- min: 0.0
- mean: 0.37
- max: 0.97
- Samples:
sentence1 sentence2 score A Q S V S Q H N H H V I L S E A A S L E L G C N Y S Y G G T V N L F W Y V Q Y P G Q H L Q L L L K Y F S G D P L V K G I K G F E A E F I K S K F S F N L R K P S V Q W S D T A E Y F C A V N A R R N T P L V F G K G T R L S V I A NA Q S V S Q H N H H V I L S E A A S L E L G C N Y S Y G G T V N L F W Y V Q Y P G Q H L Q L L L K Y F S G D P L V K G I K G F E A E F I K S K F S F N L R K P S V Q W S D T A E Y F C A V T S G R G S Q G N L I F G K G T K L S V K P N0.05165289256198347K Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V N S V S G A G S Y Q L T F F G K G T K L S V I P NG E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A N N Q G G K L I F F G Q G T E L S V K P N0.04132231404958678K Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V A G G T S Y G K L T F F G Q G T I L T V H P NK Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T Y L C C A V N S P G S G A G S Y Q L T F F G K G T K L S V I P N0.018595041322314043 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 58,673 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 107 tokens
- mean: 116.01 tokens
- max: 124 tokens
- min: 106 tokens
- mean: 116.0 tokens
- max: 126 tokens
- min: 0.0
- mean: 0.39
- max: 0.97
- Samples:
sentence1 sentence2 score A Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E S N Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D T A M Y F C A L W S G G G A D G L T F G K G T H L I I Q P YS Q Q G E E D P Q A L S I Q E G E N A T M N C S Y K T S I N N L Q W Y R Q N S G R G L V H L I L I R S N E R E K H S G R L R V T L D T S K K S S S L L I T A S R A A D T A S Y F C A R S R N K Q G G I F F F G Q G T E L S V K P N0.04132231404958678Q K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G S Q S F F W Y R Q Y S G K S P E L I M F I Y S N G D K E D G R F T A Q L N K A S Q Y V S L L I R D S Q P S D S A T Y L C C A V T T Q G G S E K L V F F G K G T K L T V N P YG E D V E Q S L F L S V R E G D S S V I N C T Y T D S S S T Y L Y W Y K Q E P G A G L Q L L T Y I F S N M D M K Q D Q R L T V L L N K K D K H L S L R I A D T Q T G D S A I Y F C C A E D K D A R L M F F G D G T Q L V V K P N0.018595041322314043G E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A S I G Q G G K L I F F G Q G T E L S V K P NG E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C C A A S N P G G G N K L T F F G T G T Q L K V E L N0.8347107438016529 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 0.001weight_decay: 0.0001num_train_epochs: 2fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.001weight_decay: 0.0001adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-dev_spearman_cosine |
|---|---|---|---|---|
| 0.0485 | 100 | 10.3293 | - | - |
| 0.0969 | 200 | 10.3109 | - | - |
| 0.1454 | 300 | 10.2921 | - | - |
| 0.1939 | 400 | 10.2746 | - | - |
| 0.2424 | 500 | 10.2654 | - | - |
| 0.2908 | 600 | 10.2522 | - | - |
| 0.3393 | 700 | 10.2391 | - | - |
| 0.3878 | 800 | 10.2306 | - | - |
| 0.4363 | 900 | 10.2105 | - | - |
| 0.4847 | 1000 | 10.1984 | - | - |
| 0.5332 | 1100 | 10.1897 | - | - |
| 0.5817 | 1200 | 10.1767 | - | - |
| 0.6302 | 1300 | 10.1702 | - | - |
| 0.6786 | 1400 | 10.1586 | - | - |
| 0.7271 | 1500 | 10.145 | - | - |
| 0.7756 | 1600 | 10.1227 | - | - |
| 0.8240 | 1700 | 10.1221 | - | - |
| 0.8725 | 1800 | 10.1022 | - | - |
| 0.9210 | 1900 | 10.0882 | - | - |
| 0.9695 | 2000 | 10.0733 | - | - |
| 1.0 | 2063 | - | 10.0591 | 0.7452 |
| 1.0179 | 2100 | 10.0549 | - | - |
| 1.0664 | 2200 | 10.0362 | - | - |
| 1.1149 | 2300 | 10.0149 | - | - |
| 1.1634 | 2400 | 10.0047 | - | - |
| 1.2118 | 2500 | 9.9963 | - | - |
| 1.2603 | 2600 | 9.9767 | - | - |
| 1.3088 | 2700 | 9.97 | - | - |
| 1.3572 | 2800 | 9.9527 | - | - |
| 1.4057 | 2900 | 9.9496 | - | - |
| 1.4542 | 3000 | 9.9261 | - | - |
| 1.5027 | 3100 | 9.9258 | - | - |
| 1.5511 | 3200 | 9.9106 | - | - |
| 1.5996 | 3300 | 9.9015 | - | - |
| 1.6481 | 3400 | 9.8807 | - | - |
| 1.6966 | 3500 | 9.8732 | - | - |
| 1.7450 | 3600 | 9.8636 | - | - |
| 1.7935 | 3700 | 9.8633 | - | - |
| 1.8420 | 3800 | 9.8469 | - | - |
| 1.8905 | 3900 | 9.8462 | - | - |
| 1.9389 | 4000 | 9.8301 | - | - |
| 1.9874 | 4100 | 9.8251 | - | - |
| 2.0 | 4126 | - | 9.8359 | 0.8623 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 9
Model tree for HassanCS/TCRa_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2
Base model
facebook/esm2_t6_8M_UR50DEvaluation results
- Pearson Cosine on all devself-reported0.822
- Spearman Cosine on all devself-reported0.862