SentenceTransformer based on facebook/esm2_t6_8M_UR50D
This is a sentence-transformers model finetuned from facebook/esm2_t6_8M_UR50D. It maps sentences & paragraphs to a 320-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: facebook/esm2_t6_8M_UR50D
- Maximum Sequence Length: 1026 tokens
- Output Dimensionality: 320 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1026, 'do_lower_case': False}) with Transformer model: EsmModel
(1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("HassanCS/TCRb_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2")
# Run inference
sentences = [
'D A G V T Q S P T H L I K T R G Q Q V T L R C S P I S G H K S V S W Y Q Q V L G Q G P Q F I F Q Y Y E K E E R G R G N F P D R F S A R Q F P N Y S S E L N V N A L L L G D S A L Y L C C A S S P G T D Y G Y T F F G S G T R L T V V E',
'E T G V T Q S P T H L I K T R G Q Q V T L R C S S Q S G H N T V S W Y Q Q A L G Q G P Q F I F Q Y Y R E E E N G R G N F P P R F S G L Q F P N Y S S E L N V N A L E L D D S A L Y L C C A S S S R T S G I N E Q F F F G P G T R L T V L E',
'G A G V S Q S L R H K V A K K G K D V A L R Y D P I S G H N A L Y W Y R Q S L G Q G L E F P I Y F Q G K D A A D K S G L P R D R F S A Q R S E G S I S T L K F Q R T Q Q G D L A V Y L C A S S S T R G S R G E Q F F G P G T R L T V L E',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 320]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
all-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8464 |
| spearman_cosine | 0.8905 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 504,071 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 111 tokens
- mean: 117.87 tokens
- max: 125 tokens
- min: 109 tokens
- mean: 117.88 tokens
- max: 132 tokens
- min: 0.0
- mean: 0.36
- max: 1.0
- Samples:
sentence1 sentence2 score N A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H N S M Y W Y R Q D P G M G L R L I Y Y S A S E G T T D K G E V P N G Y N V S R L N K R E F S L R L E S A A P S Q T S V Y F C A S R S G S G T N Y N E Q F F G P G T R L T V L EG A V V S Q H P S W V I C K S G T S V K I E C R S L D F Q A T T M F W Y R Q F P K Q S L M L M A T S N E G S K A T Y E Q G V E K D K F L I N H A S L T L S T L T V T S A H P E D S S F Y I C S A P T S G G H N E Q F G P G T R L T V L E0.36983471074380164D T G V S Q N P R H K I T K R G Q N V T F R C D P I S E H N R L Y W Y R Q T L G Q G P E F L T Y F Q N E A Q L E K S R L L S D R F S A E R P K G S F S T L E I Q R T E Q G D S A M Y L C A S S L I Q G A S W G Y T F G S G T R L T V V EN A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y R Q D P G M G L R L I H Y S V G A G I T D Q G E V P N G Y N V S R S T T E D F P L R L L S A A P S Q T S V Y F C A S S S L D G N Y G Y T F G S G T R L T V V E0.8450413223140495D V K V T Q S S R Y L V K R T G E K V F L E C V Q D M D H E N M F W Y R Q D P G L G L R L I Y F S Y D V K M K E K G D I P E G Y S V S R E K K E R F S L I L E S A S T N Q T S M Y L C C A S R V R D R G R L D Y G Y T F F G S G T R L T V V ED G G I T Q S P K Y L F R K E G Q N V T L S C E Q N L N H D A M Y W Y R Q V P G Q G L R L I Y Y S H I V N D F Q K G D I A E G Y S V S R E K K E S F P L T V T S A Q K N P T A F Y L C C A S S S R S G N E K L F F F G S G T Q L S V L E0.8347107438016529 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 56,008 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 110 tokens
- mean: 117.92 tokens
- max: 125 tokens
- min: 111 tokens
- mean: 117.93 tokens
- max: 127 tokens
- min: 0.0
- mean: 0.38
- max: 1.0
- Samples:
sentence1 sentence2 score N A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y R Q D P G M G L R L I H Y S V G A G I T D Q G E V P N G Y N V S R S T T E D F P L R L L S A A P S Q T S V Y F C C A S S P I T G T G I Y G Y T F F G S G T R L T V V ED G G I T Q S P K Y L F R K E G Q N V T L S C E Q N L N H D A M Y W Y R Q D P G Q G L R L I Y Y S Q I V N D F Q K G D I A E G Y S V S R E K K E S F P L T V T S A Q K N P T A F Y L C C A S S M I P D M N T E A F F F G Q G T R L T V V E0.03925619834710743G A V V S Q H P S W V I C K S G T S V K I E C R S L D F Q A T T M F W Y R Q F P K Q S L M L M A T S N E G S K A T Y E Q G V E K D K F L I N H A S L T L S T L T V T S A H P E D S S F Y I C S A R D S T G N G Y T F G S G T R L T V V ES A V I S Q K P S R D I C Q R G T S L T I Q C Q V D S Q V T M M F W Y R Q Q P G Q S L T L I A T A N Q G S E A T Y E S G F V I D K F P I S R P N L T F S T L T V S N M S P E D S S I Y L C S V G T G G T N E K L F F G Q G T R L T V V E0.8347107438016529D A R V T Q T P R H K V T E M G Q E V T M R C Q P I L G H N T V F W Y R Q T M M Q G L E L L A Y F R N R A P L D D S G M P K D R F S A E M P D A T L A T L K I Q P S E P R D S A V Y F C A S G T G E G S Y N E Q F F G P G T R L T V L ED A R V T Q T P R H K V T E M G Q E V T M R C Q P I L G H N T V F W Y R Q T M M Q G L E L L A Y F R N R A P L D D S G M P K D R F S A E M P D A T L A T L K I Q P S E P R D S A V Y F C A S G D Y G N R G P Y S N Q P Q H F G D G T R L S I L E0.07024793388429751 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 0.001weight_decay: 0.0001num_train_epochs: 2fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.001weight_decay: 0.0001adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-dev_spearman_cosine |
|---|---|---|---|---|
| 0.0508 | 100 | 10.3431 | - | - |
| 0.1015 | 200 | 10.3239 | - | - |
| 0.1523 | 300 | 10.3059 | - | - |
| 0.2030 | 400 | 10.2992 | - | - |
| 0.2538 | 500 | 10.2805 | - | - |
| 0.3046 | 600 | 10.2669 | - | - |
| 0.3553 | 700 | 10.2524 | - | - |
| 0.4061 | 800 | 10.2405 | - | - |
| 0.4569 | 900 | 10.2277 | - | - |
| 0.5076 | 1000 | 10.2183 | - | - |
| 0.5584 | 1100 | 10.1955 | - | - |
| 0.6091 | 1200 | 10.1802 | - | - |
| 0.6599 | 1300 | 10.1639 | - | - |
| 0.7107 | 1400 | 10.1569 | - | - |
| 0.7614 | 1500 | 10.142 | - | - |
| 0.8122 | 1600 | 10.1199 | - | - |
| 0.8629 | 1700 | 10.1018 | - | - |
| 0.9137 | 1800 | 10.0895 | - | - |
| 0.9645 | 1900 | 10.0613 | - | - |
| 1.0 | 1970 | - | 10.0420 | 0.7603 |
| 1.0152 | 2000 | 9.9671 | - | - |
| 1.0660 | 2100 | 9.9951 | - | - |
| 1.1168 | 2200 | 9.984 | - | - |
| 1.1675 | 2300 | 9.9659 | - | - |
| 1.2183 | 2400 | 9.9412 | - | - |
| 1.2690 | 2500 | 9.924 | - | - |
| 1.3198 | 2600 | 9.9016 | - | - |
| 1.3706 | 2700 | 9.8786 | - | - |
| 1.4213 | 2800 | 9.8664 | - | - |
| 1.4721 | 2900 | 9.8448 | - | - |
| 1.5228 | 3000 | 9.8323 | - | - |
| 1.5736 | 3100 | 9.8085 | - | - |
| 1.6244 | 3200 | 9.7986 | - | - |
| 1.6751 | 3300 | 9.7862 | - | - |
| 1.7259 | 3400 | 9.7621 | - | - |
| 1.7766 | 3500 | 9.75 | - | - |
| 1.8274 | 3600 | 9.7384 | - | - |
| 1.8782 | 3700 | 9.721 | - | - |
| 1.9289 | 3800 | 9.7194 | - | - |
| 1.9797 | 3900 | 9.7179 | - | - |
| 2.0 | 3940 | - | 9.7322 | 0.8905 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 15
Model tree for HassanCS/TCRb_HLA_peptide_esm2_t6_8M_UR50D_up_to_epoch_2
Base model
facebook/esm2_t6_8M_UR50DEvaluation results
- Pearson Cosine on all devself-reported0.846
- Spearman Cosine on all devself-reported0.890