Delete diffusiondet/loss.py
Browse files- diffusiondet/loss.py +0 -415
diffusiondet/loss.py
DELETED
|
@@ -1,415 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn.functional as F
|
| 3 |
-
from fvcore.nn import sigmoid_focal_loss_jit
|
| 4 |
-
from torch import nn
|
| 5 |
-
|
| 6 |
-
import torch.distributed as dist
|
| 7 |
-
from torch.distributed import get_world_size
|
| 8 |
-
from torchvision import ops
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def is_dist_avail_and_initialized():
|
| 12 |
-
if not dist.is_available():
|
| 13 |
-
return False
|
| 14 |
-
if not dist.is_initialized():
|
| 15 |
-
return False
|
| 16 |
-
return True
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def get_fed_loss_classes(gt_classes, num_fed_loss_classes, num_classes, weight):
|
| 20 |
-
"""
|
| 21 |
-
Args:
|
| 22 |
-
gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
|
| 23 |
-
num_fed_loss_classes: minimum number of classes to keep when calculating federated loss.
|
| 24 |
-
Will sample negative classes if number of unique gt_classes is smaller than this value.
|
| 25 |
-
num_classes: number of foreground classes
|
| 26 |
-
weight: probabilities used to sample negative classes
|
| 27 |
-
Returns:
|
| 28 |
-
Tensor:
|
| 29 |
-
classes to keep when calculating the federated loss, including both unique gt
|
| 30 |
-
classes and sampled negative classes.
|
| 31 |
-
"""
|
| 32 |
-
unique_gt_classes = torch.unique(gt_classes)
|
| 33 |
-
prob = unique_gt_classes.new_ones(num_classes + 1).float()
|
| 34 |
-
prob[-1] = 0
|
| 35 |
-
if len(unique_gt_classes) < num_fed_loss_classes:
|
| 36 |
-
prob[:num_classes] = weight.float().clone()
|
| 37 |
-
prob[unique_gt_classes] = 0
|
| 38 |
-
sampled_negative_classes = torch.multinomial(
|
| 39 |
-
prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False
|
| 40 |
-
)
|
| 41 |
-
fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes])
|
| 42 |
-
else:
|
| 43 |
-
fed_loss_classes = unique_gt_classes
|
| 44 |
-
return fed_loss_classes
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class CriterionDynamicK(nn.Module):
|
| 48 |
-
""" This class computes the loss for DiffusionDet.
|
| 49 |
-
The process happens in two steps:
|
| 50 |
-
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
| 51 |
-
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
def __init__(self, config, num_classes, weight_dict):
|
| 55 |
-
""" Create the criterion.
|
| 56 |
-
Parameters:
|
| 57 |
-
num_classes: number of object categories, omitting the special no-object category
|
| 58 |
-
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
| 59 |
-
"""
|
| 60 |
-
super().__init__()
|
| 61 |
-
self.config = config
|
| 62 |
-
self.num_classes = num_classes
|
| 63 |
-
self.matcher = HungarianMatcherDynamicK(config)
|
| 64 |
-
self.weight_dict = weight_dict
|
| 65 |
-
self.eos_coef = config.no_object_weight
|
| 66 |
-
self.use_focal = config.use_focal
|
| 67 |
-
self.use_fed_loss = config.use_fed_loss
|
| 68 |
-
|
| 69 |
-
if self.use_focal:
|
| 70 |
-
self.focal_loss_alpha = config.alpha
|
| 71 |
-
self.focal_loss_gamma = config.gamma
|
| 72 |
-
|
| 73 |
-
# copy-paste from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/roi_heads/fast_rcnn.py#L356
|
| 74 |
-
def loss_labels(self, outputs, targets, indices):
|
| 75 |
-
"""Classification loss (NLL)
|
| 76 |
-
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
| 77 |
-
"""
|
| 78 |
-
assert 'pred_logits' in outputs
|
| 79 |
-
src_logits = outputs['pred_logits']
|
| 80 |
-
batch_size = len(targets)
|
| 81 |
-
|
| 82 |
-
# idx = self._get_src_permutation_idx(indices)
|
| 83 |
-
# target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
| 84 |
-
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
|
| 85 |
-
dtype=torch.int64, device=src_logits.device)
|
| 86 |
-
src_logits_list = []
|
| 87 |
-
target_classes_o_list = []
|
| 88 |
-
# target_classes[idx] = target_classes_o
|
| 89 |
-
for batch_idx in range(batch_size):
|
| 90 |
-
valid_query = indices[batch_idx][0]
|
| 91 |
-
gt_multi_idx = indices[batch_idx][1]
|
| 92 |
-
if len(gt_multi_idx) == 0:
|
| 93 |
-
continue
|
| 94 |
-
bz_src_logits = src_logits[batch_idx]
|
| 95 |
-
target_classes_o = targets[batch_idx]["labels"]
|
| 96 |
-
target_classes[batch_idx, valid_query] = target_classes_o[gt_multi_idx]
|
| 97 |
-
|
| 98 |
-
src_logits_list.append(bz_src_logits[valid_query])
|
| 99 |
-
target_classes_o_list.append(target_classes_o[gt_multi_idx])
|
| 100 |
-
|
| 101 |
-
if self.use_focal or self.use_fed_loss:
|
| 102 |
-
num_boxes = torch.cat(target_classes_o_list).shape[0] if len(target_classes_o_list) != 0 else 1
|
| 103 |
-
|
| 104 |
-
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], self.num_classes + 1],
|
| 105 |
-
dtype=src_logits.dtype, layout=src_logits.layout,
|
| 106 |
-
device=src_logits.device)
|
| 107 |
-
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
|
| 108 |
-
|
| 109 |
-
gt_classes = torch.argmax(target_classes_onehot, dim=-1)
|
| 110 |
-
target_classes_onehot = target_classes_onehot[:, :, :-1]
|
| 111 |
-
|
| 112 |
-
src_logits = src_logits.flatten(0, 1)
|
| 113 |
-
target_classes_onehot = target_classes_onehot.flatten(0, 1)
|
| 114 |
-
if self.use_focal:
|
| 115 |
-
cls_loss = sigmoid_focal_loss_jit(src_logits, target_classes_onehot, alpha=self.focal_loss_alpha,
|
| 116 |
-
gamma=self.focal_loss_gamma, reduction="none")
|
| 117 |
-
else:
|
| 118 |
-
cls_loss = F.binary_cross_entropy_with_logits(src_logits, target_classes_onehot, reduction="none")
|
| 119 |
-
if self.use_fed_loss:
|
| 120 |
-
K = self.num_classes
|
| 121 |
-
N = src_logits.shape[0]
|
| 122 |
-
fed_loss_classes = get_fed_loss_classes(
|
| 123 |
-
gt_classes,
|
| 124 |
-
num_fed_loss_classes=self.fed_loss_num_classes,
|
| 125 |
-
num_classes=K,
|
| 126 |
-
weight=self.fed_loss_cls_weights,
|
| 127 |
-
)
|
| 128 |
-
fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1)
|
| 129 |
-
fed_loss_classes_mask[fed_loss_classes] = 1
|
| 130 |
-
fed_loss_classes_mask = fed_loss_classes_mask[:K]
|
| 131 |
-
weight = fed_loss_classes_mask.view(1, K).expand(N, K).float()
|
| 132 |
-
|
| 133 |
-
loss_ce = torch.sum(cls_loss * weight) / num_boxes
|
| 134 |
-
else:
|
| 135 |
-
loss_ce = torch.sum(cls_loss) / num_boxes
|
| 136 |
-
|
| 137 |
-
losses = {'loss_ce': loss_ce}
|
| 138 |
-
else:
|
| 139 |
-
raise NotImplementedError
|
| 140 |
-
|
| 141 |
-
return losses
|
| 142 |
-
|
| 143 |
-
def loss_boxes(self, outputs, targets, indices):
|
| 144 |
-
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
| 145 |
-
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
| 146 |
-
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
|
| 147 |
-
"""
|
| 148 |
-
assert 'pred_boxes' in outputs
|
| 149 |
-
# idx = self._get_src_permutation_idx(indices)
|
| 150 |
-
src_boxes = outputs['pred_boxes']
|
| 151 |
-
|
| 152 |
-
batch_size = len(targets)
|
| 153 |
-
pred_box_list = []
|
| 154 |
-
pred_norm_box_list = []
|
| 155 |
-
tgt_box_list = []
|
| 156 |
-
tgt_box_xyxy_list = []
|
| 157 |
-
for batch_idx in range(batch_size):
|
| 158 |
-
valid_query = indices[batch_idx][0]
|
| 159 |
-
gt_multi_idx = indices[batch_idx][1]
|
| 160 |
-
if len(gt_multi_idx) == 0:
|
| 161 |
-
continue
|
| 162 |
-
bz_image_whwh = targets[batch_idx]['image_size_xyxy']
|
| 163 |
-
bz_src_boxes = src_boxes[batch_idx]
|
| 164 |
-
bz_target_boxes = targets[batch_idx]["boxes"] # normalized (cx, cy, w, h)
|
| 165 |
-
bz_target_boxes_xyxy = targets[batch_idx]["boxes_xyxy"] # absolute (x1, y1, x2, y2)
|
| 166 |
-
pred_box_list.append(bz_src_boxes[valid_query])
|
| 167 |
-
pred_norm_box_list.append(bz_src_boxes[valid_query] / bz_image_whwh) # normalize (x1, y1, x2, y2)
|
| 168 |
-
tgt_box_list.append(bz_target_boxes[gt_multi_idx])
|
| 169 |
-
tgt_box_xyxy_list.append(bz_target_boxes_xyxy[gt_multi_idx])
|
| 170 |
-
|
| 171 |
-
if len(pred_box_list) != 0:
|
| 172 |
-
src_boxes = torch.cat(pred_box_list)
|
| 173 |
-
src_boxes_norm = torch.cat(pred_norm_box_list) # normalized (x1, y1, x2, y2)
|
| 174 |
-
target_boxes = torch.cat(tgt_box_list)
|
| 175 |
-
target_boxes_abs_xyxy = torch.cat(tgt_box_xyxy_list)
|
| 176 |
-
num_boxes = src_boxes.shape[0]
|
| 177 |
-
|
| 178 |
-
losses = {}
|
| 179 |
-
# require normalized (x1, y1, x2, y2)
|
| 180 |
-
loss_bbox = F.l1_loss(src_boxes_norm, ops.box_convert(target_boxes, 'cxcywh', 'xyxy'), reduction='none')
|
| 181 |
-
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
| 182 |
-
|
| 183 |
-
# loss_giou = giou_loss(box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))
|
| 184 |
-
loss_giou = 1 - torch.diag(ops.generalized_box_iou(src_boxes, target_boxes_abs_xyxy))
|
| 185 |
-
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
| 186 |
-
else:
|
| 187 |
-
losses = {'loss_bbox': outputs['pred_boxes'].sum() * 0,
|
| 188 |
-
'loss_giou': outputs['pred_boxes'].sum() * 0}
|
| 189 |
-
|
| 190 |
-
return losses
|
| 191 |
-
|
| 192 |
-
def get_loss(self, loss, outputs, targets, indices):
|
| 193 |
-
loss_map = {
|
| 194 |
-
'labels': self.loss_labels,
|
| 195 |
-
'boxes': self.loss_boxes,
|
| 196 |
-
}
|
| 197 |
-
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
| 198 |
-
return loss_map[loss](outputs, targets, indices)
|
| 199 |
-
|
| 200 |
-
def forward(self, outputs, targets):
|
| 201 |
-
""" This performs the loss computation.
|
| 202 |
-
Parameters:
|
| 203 |
-
outputs: dict of tensors, see the output specification of the model for the format
|
| 204 |
-
targets: list of dicts, such that len(targets) == batch_size.
|
| 205 |
-
The expected keys in each dict depends on the losses applied, see each loss' doc
|
| 206 |
-
"""
|
| 207 |
-
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
|
| 208 |
-
|
| 209 |
-
# Retrieve the matching between the outputs of the last layer and the targets
|
| 210 |
-
indices, _ = self.matcher(outputs_without_aux, targets)
|
| 211 |
-
|
| 212 |
-
# Compute all the requested losses
|
| 213 |
-
losses = {}
|
| 214 |
-
for loss in ["labels", "boxes"]:
|
| 215 |
-
losses.update(self.get_loss(loss, outputs, targets, indices))
|
| 216 |
-
|
| 217 |
-
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
| 218 |
-
if 'aux_outputs' in outputs:
|
| 219 |
-
for i, aux_outputs in enumerate(outputs['aux_outputs']):
|
| 220 |
-
indices, _ = self.matcher(aux_outputs, targets)
|
| 221 |
-
for loss in ["labels", "boxes"]:
|
| 222 |
-
if loss == 'masks':
|
| 223 |
-
# Intermediate masks losses are too costly to compute, we ignore them.
|
| 224 |
-
continue
|
| 225 |
-
|
| 226 |
-
l_dict = self.get_loss(loss, aux_outputs, targets, indices)
|
| 227 |
-
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
|
| 228 |
-
losses.update(l_dict)
|
| 229 |
-
|
| 230 |
-
return losses
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
def get_in_boxes_info(boxes, target_gts):
|
| 234 |
-
xy_target_gts = ops.box_convert(target_gts, 'cxcywh', 'xyxy') # (x1, y1, x2, y2)
|
| 235 |
-
|
| 236 |
-
anchor_center_x = boxes[:, 0].unsqueeze(1)
|
| 237 |
-
anchor_center_y = boxes[:, 1].unsqueeze(1)
|
| 238 |
-
|
| 239 |
-
# whether the center of each anchor is inside a gt box
|
| 240 |
-
b_l = anchor_center_x > xy_target_gts[:, 0].unsqueeze(0)
|
| 241 |
-
b_r = anchor_center_x < xy_target_gts[:, 2].unsqueeze(0)
|
| 242 |
-
b_t = anchor_center_y > xy_target_gts[:, 1].unsqueeze(0)
|
| 243 |
-
b_b = anchor_center_y < xy_target_gts[:, 3].unsqueeze(0)
|
| 244 |
-
# (b_l.long()+b_r.long()+b_t.long()+b_b.long())==4 [300,num_gt] ,
|
| 245 |
-
is_in_boxes = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
|
| 246 |
-
is_in_boxes_all = is_in_boxes.sum(1) > 0 # [num_query]
|
| 247 |
-
# in fixed center
|
| 248 |
-
center_radius = 2.5
|
| 249 |
-
# Modified to self-adapted sampling --- the center size depends on the size of the gt boxes
|
| 250 |
-
# https://github.com/dulucas/UVO_Challenge/blob/main/Track1/detection/mmdet/core/bbox/assigners/rpn_sim_ota_assigner.py#L212
|
| 251 |
-
b_l = anchor_center_x > (
|
| 252 |
-
target_gts[:, 0] - (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
|
| 253 |
-
b_r = anchor_center_x < (
|
| 254 |
-
target_gts[:, 0] + (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
|
| 255 |
-
b_t = anchor_center_y > (
|
| 256 |
-
target_gts[:, 1] - (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
|
| 257 |
-
b_b = anchor_center_y < (
|
| 258 |
-
target_gts[:, 1] + (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
|
| 259 |
-
|
| 260 |
-
is_in_centers = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
|
| 261 |
-
is_in_centers_all = is_in_centers.sum(1) > 0
|
| 262 |
-
|
| 263 |
-
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
| 264 |
-
is_in_boxes_and_center = (is_in_boxes & is_in_centers)
|
| 265 |
-
|
| 266 |
-
return is_in_boxes_anchor, is_in_boxes_and_center
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
class HungarianMatcherDynamicK(nn.Module):
|
| 270 |
-
"""This class computes an assignment between the targets and the predictions of the network
|
| 271 |
-
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
| 272 |
-
there are more predictions than targets. In this case, we do a 1-to-k (dynamic) matching of the best predictions,
|
| 273 |
-
while the others are un-matched (and thus treated as non-objects).
|
| 274 |
-
"""
|
| 275 |
-
|
| 276 |
-
def __init__(self, config):
|
| 277 |
-
super().__init__()
|
| 278 |
-
self.use_focal = config.use_focal
|
| 279 |
-
self.use_fed_loss = config.use_fed_loss
|
| 280 |
-
self.cost_class = config.class_weight
|
| 281 |
-
self.cost_giou = config.giou_weight
|
| 282 |
-
self.cost_bbox = config.l1_weight
|
| 283 |
-
self.ota_k = config.ota_k
|
| 284 |
-
|
| 285 |
-
if self.use_focal:
|
| 286 |
-
self.focal_loss_alpha = config.alpha
|
| 287 |
-
self.focal_loss_gamma = config.gamma
|
| 288 |
-
|
| 289 |
-
assert self.cost_class != 0 or self.cost_bbox != 0 or self.cost_giou != 0, "all costs cant be 0"
|
| 290 |
-
|
| 291 |
-
def forward(self, outputs, targets):
|
| 292 |
-
""" simOTA for detr"""
|
| 293 |
-
with torch.no_grad():
|
| 294 |
-
bs, num_queries = outputs["pred_logits"].shape[:2]
|
| 295 |
-
# We flatten to compute the cost matrices in a batch
|
| 296 |
-
if self.use_focal or self.use_fed_loss:
|
| 297 |
-
out_prob = outputs["pred_logits"].sigmoid() # [batch_size, num_queries, num_classes]
|
| 298 |
-
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
|
| 299 |
-
else:
|
| 300 |
-
out_prob = outputs["pred_logits"].softmax(-1) # [batch_size, num_queries, num_classes]
|
| 301 |
-
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
|
| 302 |
-
|
| 303 |
-
indices = []
|
| 304 |
-
matched_ids = []
|
| 305 |
-
assert bs == len(targets)
|
| 306 |
-
for batch_idx in range(bs):
|
| 307 |
-
bz_boxes = out_bbox[batch_idx] # [num_proposals, 4]
|
| 308 |
-
bz_out_prob = out_prob[batch_idx]
|
| 309 |
-
bz_tgt_ids = targets[batch_idx]["labels"]
|
| 310 |
-
num_insts = len(bz_tgt_ids)
|
| 311 |
-
if num_insts == 0: # empty object in key frame
|
| 312 |
-
non_valid = torch.zeros(bz_out_prob.shape[0]).to(bz_out_prob) > 0
|
| 313 |
-
indices_batchi = (non_valid, torch.arange(0, 0).to(bz_out_prob))
|
| 314 |
-
matched_qidx = torch.arange(0, 0).to(bz_out_prob)
|
| 315 |
-
indices.append(indices_batchi)
|
| 316 |
-
matched_ids.append(matched_qidx)
|
| 317 |
-
continue
|
| 318 |
-
|
| 319 |
-
bz_gtboxs = targets[batch_idx]['boxes'] # [num_gt, 4] normalized (cx, xy, w, h)
|
| 320 |
-
bz_gtboxs_abs_xyxy = targets[batch_idx]['boxes_xyxy']
|
| 321 |
-
fg_mask, is_in_boxes_and_center = get_in_boxes_info(
|
| 322 |
-
ops.box_convert(bz_boxes, 'xyxy', 'cxcywh'), # absolute (cx, cy, w, h)
|
| 323 |
-
ops.box_convert(bz_gtboxs_abs_xyxy, 'xyxy', 'cxcywh') # absolute (cx, cy, w, h)
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
pair_wise_ious = ops.box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
|
| 327 |
-
|
| 328 |
-
# Compute the classification cost.
|
| 329 |
-
if self.use_focal:
|
| 330 |
-
alpha = self.focal_loss_alpha
|
| 331 |
-
gamma = self.focal_loss_gamma
|
| 332 |
-
neg_cost_class = (1 - alpha) * (bz_out_prob ** gamma) * (-(1 - bz_out_prob + 1e-8).log())
|
| 333 |
-
pos_cost_class = alpha * ((1 - bz_out_prob) ** gamma) * (-(bz_out_prob + 1e-8).log())
|
| 334 |
-
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
|
| 335 |
-
elif self.use_fed_loss:
|
| 336 |
-
# focal loss degenerates to naive one
|
| 337 |
-
neg_cost_class = (-(1 - bz_out_prob + 1e-8).log())
|
| 338 |
-
pos_cost_class = (-(bz_out_prob + 1e-8).log())
|
| 339 |
-
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
|
| 340 |
-
else:
|
| 341 |
-
cost_class = -bz_out_prob[:, bz_tgt_ids]
|
| 342 |
-
|
| 343 |
-
# Compute the L1 cost between boxes
|
| 344 |
-
# image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
|
| 345 |
-
# image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
|
| 346 |
-
# image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
|
| 347 |
-
|
| 348 |
-
bz_image_size_out = targets[batch_idx]['image_size_xyxy']
|
| 349 |
-
bz_image_size_tgt = targets[batch_idx]['image_size_xyxy_tgt']
|
| 350 |
-
|
| 351 |
-
bz_out_bbox_ = bz_boxes / bz_image_size_out # normalize (x1, y1, x2, y2)
|
| 352 |
-
bz_tgt_bbox_ = bz_gtboxs_abs_xyxy / bz_image_size_tgt # normalize (x1, y1, x2, y2)
|
| 353 |
-
cost_bbox = torch.cdist(bz_out_bbox_, bz_tgt_bbox_, p=1)
|
| 354 |
-
|
| 355 |
-
cost_giou = -ops.generalized_box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
|
| 356 |
-
|
| 357 |
-
# Final cost matrix
|
| 358 |
-
cost = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + 100.0 * (
|
| 359 |
-
~is_in_boxes_and_center)
|
| 360 |
-
# cost = (cost_class + 3.0 * cost_giou + 100.0 * (~is_in_boxes_and_center)) # [num_query,num_gt]
|
| 361 |
-
cost[~fg_mask] = cost[~fg_mask] + 10000.0
|
| 362 |
-
|
| 363 |
-
# if bz_gtboxs.shape[0]>0:
|
| 364 |
-
indices_batchi, matched_qidx = self.dynamic_k_matching(cost, pair_wise_ious, bz_gtboxs.shape[0])
|
| 365 |
-
|
| 366 |
-
indices.append(indices_batchi)
|
| 367 |
-
matched_ids.append(matched_qidx)
|
| 368 |
-
|
| 369 |
-
return indices, matched_ids
|
| 370 |
-
|
| 371 |
-
def dynamic_k_matching(self, cost, pair_wise_ious, num_gt):
|
| 372 |
-
matching_matrix = torch.zeros_like(cost) # [300,num_gt]
|
| 373 |
-
ious_in_boxes_matrix = pair_wise_ious
|
| 374 |
-
n_candidate_k = self.ota_k
|
| 375 |
-
|
| 376 |
-
# Take the sum of the predicted value and the top 10 iou of gt with the largest iou as dynamic_k
|
| 377 |
-
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=0)
|
| 378 |
-
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
|
| 379 |
-
|
| 380 |
-
for gt_idx in range(num_gt):
|
| 381 |
-
_, pos_idx = torch.topk(cost[:, gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
|
| 382 |
-
matching_matrix[:, gt_idx][pos_idx] = 1.0
|
| 383 |
-
|
| 384 |
-
del topk_ious, dynamic_ks, pos_idx
|
| 385 |
-
|
| 386 |
-
anchor_matching_gt = matching_matrix.sum(1)
|
| 387 |
-
|
| 388 |
-
if (anchor_matching_gt > 1).sum() > 0:
|
| 389 |
-
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1], dim=1)
|
| 390 |
-
matching_matrix[anchor_matching_gt > 1] *= 0
|
| 391 |
-
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1
|
| 392 |
-
|
| 393 |
-
while (matching_matrix.sum(0) == 0).any():
|
| 394 |
-
num_zero_gt = (matching_matrix.sum(0) == 0).sum()
|
| 395 |
-
matched_query_id = matching_matrix.sum(1) > 0
|
| 396 |
-
cost[matched_query_id] += 100000.0
|
| 397 |
-
unmatch_id = torch.nonzero(matching_matrix.sum(0) == 0, as_tuple=False).squeeze(1)
|
| 398 |
-
for gt_idx in unmatch_id:
|
| 399 |
-
pos_idx = torch.argmin(cost[:, gt_idx])
|
| 400 |
-
matching_matrix[:, gt_idx][pos_idx] = 1.0
|
| 401 |
-
if (matching_matrix.sum(1) > 1).sum() > 0: # If a query matches more than one gt
|
| 402 |
-
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1],
|
| 403 |
-
dim=1) # find gt for these queries with minimal cost
|
| 404 |
-
matching_matrix[anchor_matching_gt > 1] *= 0 # reset mapping relationship
|
| 405 |
-
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1 # keep gt with minimal cost
|
| 406 |
-
|
| 407 |
-
assert not (matching_matrix.sum(0) == 0).any()
|
| 408 |
-
selected_query = matching_matrix.sum(1) > 0
|
| 409 |
-
gt_indices = matching_matrix[selected_query].max(1)[1]
|
| 410 |
-
assert selected_query.sum() == len(gt_indices)
|
| 411 |
-
|
| 412 |
-
cost[matching_matrix == 0] = cost[matching_matrix == 0] + float('inf')
|
| 413 |
-
matched_query_id = torch.min(cost, dim=0)[1]
|
| 414 |
-
|
| 415 |
-
return (selected_query, gt_indices), matched_query_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|