File size: 50,226 Bytes
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a142520
ad84c5d
 
 
 
 
 
 
 
a142520
ad84c5d
 
598c6ec
ad84c5d
 
 
 
 
 
 
 
a142520
ad84c5d
 
598c6ec
ad84c5d
 
 
 
 
 
 
 
a142520
ad84c5d
 
a142520
ad84c5d
 
a142520
ad84c5d
 
a142520
ad84c5d
 
a142520
ad84c5d
 
a142520
ad84c5d
 
a142520
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a142520
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a142520
ad84c5d
 
a142520
598c6ec
ad84c5d
 
a142520
598c6ec
ad84c5d
 
a142520
 
 
 
 
 
 
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a142520
 
ad84c5d
 
 
 
 
 
 
 
 
598c6ec
ad84c5d
 
 
 
 
 
 
 
 
 
a142520
 
ad84c5d
 
3c242b0
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598c6ec
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a142520
 
 
 
a4da7e0
ad84c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:400
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: "Wrapper for calling the clean method of services attribute\n\n\
    \        :return: None"
  sentences:
  - "def import_from_nhmmer_table(hmmout_path):\n        \n        \n        \n  \
    \      \n        res=HMMSearchResult()\n        res.fields = [\n             \
    \          SequenceSearchResult.QUERY_ID_FIELD,\n                       SequenceSearchResult.HMM_NAME_FIELD,\n\
    \                       SequenceSearchResult.ALIGNMENT_LENGTH_FIELD,\n       \
    \                SequenceSearchResult.QUERY_FROM_FIELD,\n                    \
    \   SequenceSearchResult.QUERY_TO_FIELD,\n                       SequenceSearchResult.HIT_FROM_FIELD,\n\
    \                       SequenceSearchResult.HIT_TO_FIELD,\n                 \
    \      SequenceSearchResult.ALIGNMENT_BIT_SCORE,\n                       SequenceSearchResult.ALIGNMENT_DIRECTION,\n\
    \                       ]\n        \n        for row in [x.rstrip().split() for\
    \ x in open(hmmout_path) if not x.startswith()]:\n            alifrom    = int(row[6])\n\
    \            alito      = int(row[7])\n            aln_length = (alito-alifrom\
    \ if alito-alifrom>0 else alifrom-alito)\n            res.results.append([row[0],\n\
    \                                row[2],\n                                aln_length,\n\
    \                                int(row[4]),\n                              \
    \  int(row[5]),\n                                alifrom,\n                  \
    \              alito,\n                                row[13],\n            \
    \                    alito > alifrom\n                                ])\n   \
    \     return res"
  - "def clean(self):\n        \n        logger.debug(\"Cleaning configuration objects\
    \ before configuration sending:\")\n        types_creations = self.__class__.types_creations\n\
    \        for o_type in types_creations:\n            (_, _, inner_property, _,\
    \ _) = types_creations[o_type]\n            logger.debug(\"  . for %s\", inner_property,\
    \ )\n            inner_object = getattr(self, inner_property)\n            inner_object.clean()"
  - "def index_modules(idx=None, path=None):\n    \n    suppress_output()\n    modules\
    \ = defaultdict(list)\n    pkglist = pkgutil.walk_packages(onerror=lambda x: True)\n\
    \    print(pkglist)\n    if path:\n        pkglist = pkgutil.walk_packages(path,\
    \ onerror=lambda x: True)\n    for modl, name, ispkg in pkglist:\n        try:\n\
    \            path = os.path.join(modl.path, name.split()[-1])\n        except\
    \ AttributeError:\n            \n            continue\n\n        if os.path.isdir(path):\n\
    \            path = os.path.join(path, )\n        path += \n\n        objs = []\n\
    \n        if os.path.exists(path):\n            try:\n                objs = read_objs_from_path(path)\n\
    \            except:\n                continue\n        elif not re.search(MODULE_BLACKLIST,\
    \ name):\n            try:\n                mod = __import__(name)\n         \
    \       objs = [k for k in dir(mod) if not k.startswith()]\n            except:\n\
    \                continue\n        else:\n            continue\n\n        for\
    \ obj in objs:\n            if name not in modules[obj]:\n                modules[obj].append(name)\n\
    \    suppress_output(True)\n    return merge_dicts(idx, dict(modules))"
- source_sentence: Try to import the aeneas package and return ``True`` if that fails.
  sentences:
  - "def check_import():\n    \n    try:\n        import aeneas\n        print_success(u\"\
    aeneas         OK\")\n        return False\n    except ImportError:\n        print_error(u\"\
    aeneas         ERROR\")\n        print_info(u\"  Unable to load the aeneas Python\
    \ package\")\n        print_info(u\"  This error is probably caused by:\")\n \
    \       print_info(u\"    A. you did not download/git-clone the aeneas package\
    \ properly; or\")\n        print_info(u\"    B. you did not install the required\
    \ Python packages:\")\n        print_info(u\"      1. BeautifulSoup4\")\n    \
    \    print_info(u\"      2. lxml\")\n        print_info(u\"      3. numpy\")\n\
    \    except Exception as e:\n        print_error(e)\n    return True"
  - "def simplify(source, kink=20):\n    \n    source_coord = map(lambda o: {\"lng\"\
    : o.coordinates[0], \"lat\": o.coordinates[1]}, source)\n\n    \n    \n    \n\
    \    F = (math.pi / 180.0) * 0.5\n    index = [] \n    sig_start = [] \n    sig_end\
    \ = []\n\n    \n    count = len(source_coord)\n    if count < 3:\n        return\
    \ source_coord \n\n    \n\n    band_sqr = kink * 360.0 / (2.0 * math.pi * 6378137.0)\
    \ \n    band_sqr *= band_sqr\n    n_dest = 0\n    sig_start[0] = 0\n    sig_end[0]\
    \ = count - 1\n    n_stack = 1\n\n    \n    while n_stack > 0:\n        \n   \
    \     start = sig_start[n_stack - 1]\n        end = sig_end[n_stack - 1]\n   \
    \     n_stack -= 1\n\n        if (end - start) > 1: \n            \n         \
    \   x12 = source[end][\"lng\"] - source[start][\"lng\"]\n            y12 = source[end][\"\
    lat\"] - source[start][\"lat\"]\n            if math.fabs(x12) > 180.0:\n    \
    \            x12 = 360.0 - math.fabs(x12)\n            x12 *= math.cos(F * (source[end][\"\
    lat\"] + source[start][\"lat\"])) \n            d12 = (x12 * x12) + (y12 * y12)\n\
    \n            i = start + 1\n            sig = start\n            max_dev_sqr\
    \ = -1.0\n            while i < end:\n                x13 = source[i][\"lng\"\
    ] - source[start][\"lng\"]\n                y13 = source[i][\"lat\"] - source[start][\"\
    lat\"]\n                if math.fabs(x13) > 180.0:\n                    x13 =\
    \ 360.0 - math.fabs(x13)\n                x13 *= math.cos(F * (source[i][\"lat\"\
    ] + source[start][\"lat\"]))\n                d13 = (x13 * x13) + (y13 * y13)\n\
    \                x23 = source[i][\"lng\"] - source[end][\"lng\"]\n           \
    \     y23 = source[i][\"lat\"] - source[end][\"lat\"]\n                if math.fabs(x23)\
    \ > 180.0:\n                    x23 = 360.0 - math.fabs(x23)\n               \
    \ x23 *= math.cos(F * (source[i][\"lat\"] + source[end][\"lat\"]))\n         \
    \       d23 = (x23 * x23) + (y23 * y23)\n\n                if d13 >= (d12 + d23):\n\
    \                    dev_sqr = d23\n                elif d23 >= (d12 + d13):\n\
    \                    dev_sqr = d13\n                else:\n                  \
    \  dev_sqr = (x13 * y12 - y13 * x12) * (x13 * y12 - y13 * x12) / d12 \n      \
    \          if dev_sqr > max_dev_sqr:\n                    sig = i\n          \
    \          max_dev_sqr = dev_sqr\n                i += 1\n\n\n            if max_dev_sqr\
    \ < band_sqr: \n            \n                index[n_dest] = start\n        \
    \        n_dest += 1\n            else: \n                n_stack += 1\n     \
    \           sig_start[n_stack - 1] = sig\n                sig_end[n_stack - 1]\
    \ = end\n                n_stack += 1\n                sig_start[n_stack - 1]\
    \ = start\n                sig_end[n_stack - 1] = sig\n\n        else:  \n   \
    \         index[n_dest] = start\n            n_dest += 1\n\n    \n    index[n_dest]\
    \ = count - 1\n    n_dest += 1\n\n    \n    r = []\n    for i in range(0, n_dest):\n\
    \        r.append(source_coord[index[i]])\n\n    return map(lambda o:  {\"type\"\
    : \"Point\",\"coordinates\": [o.lng, o.lat]}, r)"
  - "def smooth(data, fw):\r\n    \r\n    if fw == 0:\r\n        fdata = data\r\n\
    \    else:\r\n        fdata = lfilter(np.ones(fw)/fw, 1, data)\r\n    return fdata"
- source_sentence: Start response processing.
  sentences:
  - "async def start(self, connection: ) -> :\n        \n        self._closed = False\n\
    \        self._protocol = connection.protocol\n        self._connection = connection\n\
    \n        with self._timer:\n            while True:\n                \n     \
    \           try:\n                    message, payload = await self._protocol.read()\
    \  \n                except http.HttpProcessingError as exc:\n               \
    \     raise ClientResponseError(\n                        self.request_info, self.history,\n\
    \                        status=exc.code,\n                        message=exc.message,\
    \ headers=exc.headers) from exc\n\n                if (message.code < 100 or\n\
    \                        message.code > 199 or message.code == 101):\n       \
    \             break\n\n                if self._continue is not None:\n      \
    \              set_result(self._continue, True)\n                    self._continue\
    \ = None\n\n        \n        payload.on_eof(self._response_eof)\n\n        \n\
    \        self.version = message.version\n        self.status = message.code\n\
    \        self.reason = message.reason\n\n        \n        self._headers = message.headers\
    \  \n        self._raw_headers = message.raw_headers  \n\n        \n        self.content\
    \ = payload\n\n        \n        for hdr in self.headers.getall(hdrs.SET_COOKIE,\
    \ ()):\n            try:\n                self.cookies.load(hdr)\n           \
    \ except CookieError as exc:\n                client_logger.warning(\n       \
    \             , exc)\n        return self"
  - "def solve(self, verbose=False, allow_brute_force=True):\n        \n        while\
    \ not self.is_solved:\n            \n            self._update()\n\n          \
    \  \n            singles_found = False or self._fill_naked_singles() or self._fill_hidden_singles()\n\
    \n            \n            \n            \n            if not singles_found:\n\
    \                if allow_brute_force:\n                    solution = None\n\
    \                    try:\n                        dlxs = DancingLinksSolver(copy.deepcopy(self._matrix))\n\
    \                        solutions = dlxs.solve()\n                        solution\
    \ = next(solutions)\n                        more_solutions = next(solutions)\n\
    \                    except StopIteration as e:\n                        if solution\
    \ is not None:\n                            self._matrix = solution\n        \
    \                else:\n                            raise SudokuHasNoSolutionError(\"\
    Dancing Links solver could not find any solution.\")\n                    except\
    \ Exception as e:\n                        raise SudokuHasNoSolutionError(\"Brute\
    \ Force method failed.\")\n                    else:\n                       \
    \ \n                        \n                        raise SudokuHasMultipleSolutionsError(\"\
    This Sudoku has multiple solutions!\")\n                    self.solution_steps.append(\"\
    BRUTE FORCE - Dancing Links\")\n                    break\n                else:\n\
    \                    print(self)\n                    raise SudokuTooDifficultError(\"\
    This Sudoku requires more advanced methods!\")\n        if verbose:\n        \
    \    print(\"Sudoku solved in {0} iterations!\\n{1}\".format(len(self.solution_steps),\
    \ self))\n            for step in self.solution_steps:\n                print(step)"
  - "def get_peer_ips(self):\n        \n        presponse = [ord(i) for i in self.tracker_response[]]\n\
    \        while presponse:\n            peer_ip = ((.join(str(x) for x in presponse[0:4]),\n\
    \                       256 * presponse[4] + presponse[5]))\n            if peer_ip\
    \ not in self.peer_ips:\n                self.peer_ips.append(peer_ip)\n     \
    \       presponse = presponse[6:]"
- source_sentence: "Setter method for ipv6_phy_intf_cmds, mapped from YANG variable\
    \ /interface/fortygigabitethernet/ipv6/ipv6_phy_intf_cmds (container)\n    If\
    \ this variable is read-only (config: false) in the\n    source YANG file, then\
    \ _set_ipv6_phy_intf_cmds is considered as a private\n    method. Backends looking\
    \ to populate this variable should\n    do so via calling thisObj._set_ipv6_phy_intf_cmds()\
    \ directly."
  sentences:
  - "def _trim_xpath(self, xpath, prop):\n        \n\n        xroot = self._get_xroot_for(prop)\n\
    \n        if xroot is None and isinstance(xpath, string_types):\n            xtags\
    \ = xpath.split(XPATH_DELIM)\n\n            if xtags[-1] in _iso_tag_primitives:\n\
    \                xroot = XPATH_DELIM.join(xtags[:-1])\n\n        return xroot"
  - "def _set_ipv6_phy_intf_cmds(self, v, load=False):\n    \n    if hasattr(v, \"\
    _utype\"):\n      v = v._utype(v)\n    try:\n      t = YANGDynClass(v,base=ipv6_phy_intf_cmds.ipv6_phy_intf_cmds,\
    \ is_container=, presence=False, yang_name=\"ipv6-phy-intf-cmds\", rest_name=\"\
    \", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True,\
    \ extensions={u: {u: u, u: None, u: u}}, namespace=, defining_module=, yang_type=,\
    \ is_config=True)\n    except (TypeError, ValueError):\n      raise ValueError({\n\
    \          : ,\n          : \"container\",\n          : ,\n        })\n\n    self.__ipv6_phy_intf_cmds\
    \ = t\n    if hasattr(self, ):\n      self._set()"
  - "def create_snapshot(self, xml_bytes):\n        \n        root = XML(xml_bytes)\n\
    \        snapshot_id = root.findtext(\"snapshotId\")\n        volume_id = root.findtext(\"\
    volumeId\")\n        status = root.findtext(\"status\")\n        start_time =\
    \ root.findtext(\"startTime\")\n        start_time = datetime.strptime(\n    \
    \        start_time[:19], \"%Y-%m-%dT%H:%M:%S\")\n        progress = root.findtext(\"\
    progress\")[:-1]\n        progress = float(progress or \"0\") / 100.\n       \
    \ return model.Snapshot(\n            snapshot_id, volume_id, status, start_time,\
    \ progress)"
- source_sentence: "Generates samples of text from the provided vocabulary.\n\n  Args:\n\
    \    plain_vocab: vocabulary.\n    distribution: distribution.\n    train_samples:\
    \ samples for training.\n    length: length.\n\n  Returns:\n    train_indices\
    \ (np.array of Integers): random integers for training.\n      shape = [num_samples,\
    \ length]\n    test_indices (np.array of Integers): random integers for testing.\n\
    \      shape = [num_samples, length]\n    plain_vocab   (list of Integers): unique\
    \ vocabularies."
  sentences:
  - "def late_filling(target, pressure=,\n                 Pc_star=,\n           \
    \      Swp_star=0.2, eta=3):\n    r\n    element = pressure.split()[0]\n    network\
    \ = target.project.network\n    phase = target.project.find_phase(target)\n  \
    \  pc_star = phase[Pc_star]\n    Pc = phase[pressure]\n    \n        Ts = network.map_throats(throats=target.Ts,\
    \ origin=target)\n        values = values[Ts]\n    else:\n        Ps = network.map_pores(pores=target.Ps,\
    \ origin=target)\n        values = values[Ps]\n    return values"
  - "def switch(self, name):\n        \n        try:\n            switch = self.storage[self.__namespaced(name)]\n\
    \        except KeyError:\n            if not self.autocreate:\n             \
    \   raise ValueError(\"No switch named  registered in \" % (name, self.namespace))\n\
    \n            switch = self.__create_and_register_disabled_switch(name)\n\n  \
    \      switch.manager = self\n        return switch"
  - "def generate_plaintext_random(plain_vocab, distribution, train_samples,\n   \
    \                           length):\n  \n  if distribution is not None:\n   \
    \ assert len(distribution) == len(plain_vocab)\n\n  train_indices = np.random.choice(\n\
    \      range(len(plain_vocab)), (train_samples, length), p=distribution)\n\n \
    \ return train_indices"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@1
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.99
      name: Cosine Accuracy@1
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.99
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.99
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@1
      value: 0.99
      name: Cosine Ndcg@1
    - type: cosine_ndcg@5
      value: 0.9963092975357145
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.9963092975357145
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.99
      name: Cosine Mrr@1
    - type: cosine_mrr@5
      value: 0.995
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.995
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.995
      name: Cosine Map@100
---

# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision c54f2e6e80b2d7b7de06f51cec4959f6b3e03418 -->
- **Maximum Sequence Length:** 32768 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JacobLinCool/Qwen3-Embedding-0.6B-GIR-1")
# Run inference
queries = [
    "Generates samples of text from the provided vocabulary.\n\n  Args:\n    plain_vocab: vocabulary.\n    distribution: distribution.\n    train_samples: samples for training.\n    length: length.\n\n  Returns:\n    train_indices (np.array of Integers): random integers for training.\n      shape = [num_samples, length]\n    test_indices (np.array of Integers): random integers for testing.\n      shape = [num_samples, length]\n    plain_vocab   (list of Integers): unique vocabularies.",
]
documents = [
    'def generate_plaintext_random(plain_vocab, distribution, train_samples,\n                              length):\n  \n  if distribution is not None:\n    assert len(distribution) == len(plain_vocab)\n\n  train_indices = np.random.choice(\n      range(len(plain_vocab)), (train_samples, length), p=distribution)\n\n  return train_indices',
    'def switch(self, name):\n        \n        try:\n            switch = self.storage[self.__namespaced(name)]\n        except KeyError:\n            if not self.autocreate:\n                raise ValueError("No switch named  registered in " % (name, self.namespace))\n\n            switch = self.__create_and_register_disabled_switch(name)\n\n        switch.manager = self\n        return switch',
    'def late_filling(target, pressure=,\n                 Pc_star=,\n                 Swp_star=0.2, eta=3):\n    r\n    element = pressure.split()[0]\n    network = target.project.network\n    phase = target.project.find_phase(target)\n    pc_star = phase[Pc_star]\n    Pc = phase[pressure]\n    \n        Ts = network.map_throats(throats=target.Ts, origin=target)\n        values = values[Ts]\n    else:\n        Ps = network.map_pores(pores=target.Ps, origin=target)\n        values = values[Ps]\n    return values',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.8344, -0.0822,  0.0233]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.99       |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.99       |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.99       |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@1       | 0.99       |
| cosine_ndcg@5       | 0.9963     |
| **cosine_ndcg@10**  | **0.9963** |
| cosine_mrr@1        | 0.99       |
| cosine_mrr@5        | 0.995      |
| cosine_mrr@10       | 0.995      |
| cosine_map@100      | 0.995      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 400 training samples
* Columns: <code>query</code> and <code>code</code>
* Approximate statistics based on the first 400 samples:
  |         | query                                                                               | code                                                                                  |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                                |
  | details | <ul><li>min: 2 tokens</li><li>mean: 67.12 tokens</li><li>max: 3156 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 126.98 tokens</li><li>max: 1236 tokens</li></ul> |
* Samples:
  | query                                                                                                                                                                                                                                                                                 | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>For memory actions, get a list of addresses it operates on.<br><br>        :param SimAction action: The action object to work with.<br>        :return:                 A list of addresses that are accessed with that action.<br>        :rtype:                  list</code> | <code>def _get_actual_addrs(action, state):<br>        <br><br>        if action.actual_addrs is None:<br>            <br>                addr_list = {0x60000000}  <br>        else:<br>            addr_list = set(action.actual_addrs)<br><br>        return addr_list</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>Construct the input file of the calculation.</code>                                                                                                                                                                                                                             | <code>def make_input(self, with_header=False):<br>        <br>        s = str(self.input)<br>        if with_header: s = str(self) + "\n" + s<br>        return s</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>Check worker status route</code>                                                                                                                                                                                                                                                | <code>def check_worker_status():<br>    <br>    if  not in request.args:<br>        resp = {"status": "bad request"}<br>        return jsonify(**resp)<br>    else:<br>        worker_id = request.args[]<br>        assignment_id = request.args[]<br>        allow_repeats = CONFIG.getboolean(, )<br>        if allow_repeats: <br>            try:<br>                part = Participant.query.\<br>                    filter(Participant.workerid == worker_id).\<br>                    filter(Participant.assignmentid == assignment_id).one()<br>                status = part.status<br>            except exc.SQLAlchemyError:<br>                status = NOT_ACCEPTED<br>        else: <br>            try:<br>                matches = Participant.query.\<br>                    filter(Participant.workerid == worker_id).all()<br>                numrecs = len(matches)<br>                if numrecs==0: <br>                    status = NOT_ACCEPTED<br>                else:<br>                    status = max([record.status for record in matches])<br>            except exc.SQLAlchemyError:<br>  ...</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 100 evaluation samples
* Columns: <code>query</code> and <code>code</code>
* Approximate statistics based on the first 100 samples:
  |         | query                                                                              | code                                                                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 66.56 tokens</li><li>max: 548 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 142.11 tokens</li><li>max: 901 tokens</li></ul> |
* Samples:
  | query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Return the value of the android prefixed attribute in a specific tag.<br><br>        This function will always try to get the attribute with a android: prefix first,<br>        and will try to return the attribute without the prefix, if the attribute could not be found.<br>        This is useful for some broken AndroidManifest.xml, where no android namespace is set,<br>        but could also indicate malicious activity (i.e. wrongly repackaged files).<br>        A warning is printed if the attribute is found without a namespace prefix.<br><br>        If you require to get the exact result you need to query the tag directly:<br><br>        example::<br>            >>> from lxml.etree import Element<br>            >>> tag = Element('bar', nsmap={'android': 'http://schemas.android.com/apk/res/android'})<br>            >>> tag.set('{http://schemas.android.com/apk/res/android}foobar', 'barfoo')<br>            >>> tag.set('name', 'baz')<br>            # Assume that `a` is some APK object<br>            >>> a.get_value_from_tag(tag, 'name'...</code> | <code>def get_value_from_tag(self, tag, attribute):<br>        <br><br>        <br>        <br>        value = tag.get(self._ns(attribute))<br>        if value is None:<br>            value = tag.get(attribute)<br><br>            if value:<br>                <br>                log.warning("Failed to get the attribute  on tag  with namespace. "<br>                            "But found the same attribute without namespace!".format(attribute, tag.tag))<br>        return value</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  | <code>Get information about this object as a dictionary.  Used by WebSocket interface to pass some<br>            relevant information to client applications.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>def get_as_datadict(self):<br>        <br>        return dict(type=self.__class__.__name__, tags=list(self.tags))</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>Makes forecast with the estimated model<br><br>        Parameters<br>        ----------<br>        h : int (default : 5)<br>            How many steps ahead would you like to forecast?<br><br>        past_values : int (default : 20)<br>            How many past observations to show on the forecast graph?<br><br>        intervals : Boolean<br>            Would you like to show 95% prediction intervals for the forecast?<br><br>        Returns<br>        ----------<br>        - Plot of the forecast</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>def plot_predict(self,h=5,past_values=20,intervals=True,**kwargs):      <br>        <br>        import matplotlib.pyplot as plt<br>        import seaborn as sns<br><br>        figsize = kwargs.get(,(10,7))<br><br>        if self.latent_variables.estimated is False:<br>            raise Exception("No latent variables estimated!")<br>        else:<br>            <br>            scale, shape, skewness = self._get_scale_and_shape(self.latent_variables.get_z_values(transformed=True))<br>            previous_value = self.data[-1]  <br>            forecasted_values = np.ones(h)*self.states[-1]  <br>            date_index = self.shift_dates(h)<br>            simulations = 10000<br>            sim_vector = np.zeros([simulations,h])<br>            t_params = self.transform_z()<br><br>            for n in range(0,simulations):  <br>                rnd_q = np.random.normal(0,np.sqrt(self.latent_variables.get_z_values(transformed=True)[0]),h) <br>                exp = forecasted_values.copy()<br><br>                for t in range(0,h):<br>                    if t == 0:...</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 2025
- `bf16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `push_to_hub`: True
- `hub_model_id`: JacobLinCool/Qwen3-Embedding-0.6B-GIR-1
- `hub_private_repo`: False
- `gradient_checkpointing`: True
- `eval_on_start`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 2025
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: JacobLinCool/Qwen3-Embedding-0.6B-GIR-1
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch   | Step  | Validation Loss | cosine_ndcg@10 |
|:-------:|:-----:|:---------------:|:--------------:|
| 0       | 0     | 0.0616          | 0.9926         |
| **1.0** | **7** | **0.0358**      | **0.9963**     |
| -1      | -1    | -               | 0.9963         |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->