JacobLinCool's picture
Upload processor
0ae8b31 verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-nope
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 15.549715286903199
            name: Wer

whisper-large-v3-turbo-nope

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4736
  • Wer: 15.5497
  • Cer: 8.5462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 0 0 8.8537 1137.9325 452.8176
1.0467 0.1 500 1.6165 59.5707 44.0850
0.5278 0.2 1000 0.9622 29.9606 18.2843
0.3648 0.3 1500 0.7630 24.7043 14.1328
0.346 0.4 2000 0.6770 21.1126 11.6111
0.2755 0.5 2500 0.6325 21.1564 12.0409
0.3617 0.6 3000 0.5587 22.8208 11.4895
0.2343 0.7 3500 0.5154 16.8200 12.4625
0.2468 0.8 4000 0.4874 18.5721 13.8733
0.2459 0.9 4500 0.4765 15.5497 8.3516
0.2776 1.0 5000 0.4736 15.5497 8.5462

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4