adaamko's picture
Update README.md
4ef7cf6 verified
---
license: mit
language:
- it
base_model:
- EuroBERT/EuroBERT-210m
pipeline_tag: token-classification
tags:
- token classification
- hallucination detection
- transformers
- question answer
datasets:
- KRLabsOrg/ragtruth-it-translated
---
# LettuceDetect: Italian Hallucination Detection Model
<p align="center">
<img src="https://github.com/KRLabsOrg/LettuceDetect/blob/feature/cn_llm_eval/assets/lettuce_detective_multi.png?raw=true" alt="LettuceDetect Logo" width="400"/>
</p>
**Model Name:** KRLabsOrg/lettucedect-210m-eurobert-it-v1
**Organization:** KRLabsOrg
**Github:** https://github.com/KRLabsOrg/LettuceDetect
## Overview
LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for multilingual Retrieval-Augmented Generation (RAG) applications. This model is built on **EuroBERT-210M**, which has been specifically chosen for its extended context support (up to **8192 tokens**) and strong multilingual capabilities. This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.
**This is our Italian base model utilizing EuroBERT-210M architecture**
## Model Details
- **Architecture:** EuroBERT-210M with extended context support (up to 8192 tokens)
- **Task:** Token Classification / Hallucination Detection
- **Training Dataset:** RagTruth-IT (translated from the original RAGTruth dataset)
- **Language:** Italian
## How It Works
The model is trained to identify tokens in the Italian answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.
## Usage
### Installation
Install the 'lettucedetect' repository
```bash
pip install lettucedetect
```
### Using the model
```python
from lettucedetect.models.inference import HallucinationDetector
# For a transformer-based approach:
detector = HallucinationDetector(
method="transformer",
model_path="KRLabsOrg/lettucedect-210m-eurobert-it-v1",
lang="it",
trust_remote_code=True
)
contexts = ["La Francia è un paese in Europa. La capitale della Francia è Parigi. La popolazione della Francia è di 67 milioni."]
question = "Qual è la capitale della Francia? Qual è la popolazione della Francia?"
answer = "La capitale della Francia è Parigi. La popolazione della Francia è di 69 milioni."
# Get span-level predictions indicating which parts of the answer are considered hallucinated.
predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
print("Previsioni:", predictions)
# Previsioni: [{'start': 37, 'end': 83, 'confidence': 0.9231457829475403, 'text': ' La popolazione della Francia è di 69 milioni.'}]
```
## Performance
**Results on Translated RAGTruth-IT**
We evaluate our Italian models on translated versions of the [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. The EuroBERT-210M Italian model achieves an F1 score of 65.93%, outperforming prompt-based methods like GPT-4.1-mini (61.06%) with an improvement of +4.87 percentage points.
For detailed performance metrics, see the table below:
| Language | Model | Precision (%) | Recall (%) | F1 (%) | GPT-4.1-mini F1 (%) | Δ F1 (%) |
|----------|-----------------|---------------|------------|--------|---------------------|----------|
| Italian | EuroBERT-210M | 60.57 | 72.32 | 65.93 | 61.06 | +4.87 |
| Italian | EuroBERT-610M | 76.67 | 72.85 | 74.71 | 61.06 | +13.65 |
While the 610M variant achieves higher performance, the 210M model offers a good balance between accuracy and computational efficiency, processing examples approximately 3× faster. It shows particularly strong recall performance at 72.32%.
## Citing
If you use the model or the tool, please cite the following paper:
```bibtex
@misc{Kovacs:2025,
title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
author={Ádám Kovács and Gábor Recski},
year={2025},
eprint={2502.17125},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.17125},
}
```