Kabster's picture
Update README.md
77aa25e verified
---
base_model:
- BioMistral/BioMistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
tags:
- mergekit
- merge
license: apache-2.0
---
# Bio-Mistralv2-Squared-SLERP
Bio-Mistralv2-Squared is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### πŸ€–πŸ’¬ Models Merged
The following models were included in the merge:
* [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
### 🧩 Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: BioMistral/BioMistral-7B
layer_range: [0, 32]
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 32]
merge_method: slerp
base_model: BioMistral/BioMistral-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
### πŸ’» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kabster/Bio-Mistralv2-Squared"
messages = [{"role": "user", "content": "What is fluimucil used for?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"])
```