|
|
--- |
|
|
base_model: |
|
|
- BioMistral/BioMistral-7B |
|
|
- mistralai/Mistral-7B-Instruct-v0.2 |
|
|
tags: |
|
|
- mergekit |
|
|
- merge |
|
|
license: apache-2.0 |
|
|
--- |
|
|
# Bio-Mistralv2-Squared-SLERP |
|
|
|
|
|
Bio-Mistralv2-Squared is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
|
|
## Merge Details |
|
|
### Merge Method |
|
|
|
|
|
This model was merged using the SLERP merge method. |
|
|
|
|
|
### π€π¬ Models Merged |
|
|
|
|
|
The following models were included in the merge: |
|
|
* [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B) |
|
|
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) |
|
|
|
|
|
### π§© Configuration |
|
|
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
|
|
```yaml |
|
|
|
|
|
slices: |
|
|
- sources: |
|
|
- model: BioMistral/BioMistral-7B |
|
|
layer_range: [0, 32] |
|
|
- model: mistralai/Mistral-7B-Instruct-v0.2 |
|
|
layer_range: [0, 32] |
|
|
merge_method: slerp |
|
|
base_model: BioMistral/BioMistral-7B |
|
|
parameters: |
|
|
t: |
|
|
- filter: self_attn |
|
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
|
- filter: mlp |
|
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
|
- value: 0.5 |
|
|
dtype: bfloat16 |
|
|
|
|
|
``` |
|
|
|
|
|
### π» Usage |
|
|
|
|
|
```python |
|
|
!pip install -qU transformers accelerate |
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
import transformers |
|
|
import torch |
|
|
|
|
|
model = "Kabster/Bio-Mistralv2-Squared" |
|
|
messages = [{"role": "user", "content": "What is fluimucil used for?"}] |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
pipeline = transformers.pipeline( |
|
|
"text-generation", |
|
|
model=model, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto", |
|
|
) |
|
|
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95) |
|
|
print(outputs[0]["generated_text"]) |
|
|
``` |