|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: mistralai/Voxtral-Mini-3B-2507 |
|
|
tags: |
|
|
- voxtral |
|
|
- quantized |
|
|
- mlx |
|
|
- voxtral-mini-3b-2507 |
|
|
library_name: mlx |
|
|
--- |
|
|
|
|
|
# Voxtral Mini 3B — 2507 — Quantized (MLX) |
|
|
|
|
|
Public quantized weights based on MLX bf16 from `mlx-community/Voxtral-Mini-3B-2507-bf16`. |
|
|
Upstream model: [`mistralai/Voxtral-Mini-3B-2507`](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507). |
|
|
|
|
|
## Variants (quantization profiles) |
|
|
- Q4: folder `mlx-q4/` |
|
|
- Q5: folder `mlx-q5/` |
|
|
- Q6: folder `mlx-q6/` |
|
|
- Q8: folder `mlx-q8/` |
|
|
|
|
|
Published variants appear as subfolders at the top of this repo when available. |
|
|
|
|
|
## Quantization notes |
|
|
- Only inference weights are quantized (Q4/Q5/Q6/Q8 as above). |
|
|
- Embeddings are NOT quantized to preserve shape compatibility. Therefore, any "bits per weight" metric may exceed the nominal target (informational, not an error). |
|
|
|
|
|
## Quickstart (MLX) |
|
|
```python |
|
|
from mlx_lm import load, generate |
|
|
model, tokenizer = load("NeoRoth/voxtral-3b-quantized") |
|
|
print(generate(model, tokenizer, "Hello!", max_tokens=64)) |
|
|
``` |
|
|
|
|
|
## Integrity (SHA256) |
|
|
- Q4 `model-00001-of-00001.safetensors`: |
|
|
- `eec98aef078b3db2c226943d38558d814b10ec387dc5359d333eeed4be5298d2` |
|
|
- Q8 `model-00001-of-00001.safetensors`: |
|
|
- `37999e4a9dda52a0aedb593636be6c12e69dd8b8457f15ce48134f88b1ccebd3` |
|
|
|
|
|
## License |
|
|
- Apache-2.0 (see `LICENSE.txt`). |
|
|
|
|
|
## Credits |
|
|
- Upstream model: [`mistralai/Voxtral-Mini-3B-2507`](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507) |
|
|
- MLX bf16 base used for quantization: [`mlx-community/Voxtral-Mini-3B-2507-bf16`](https://huggingface.co/mlx-community/Voxtral-Mini-3B-2507-bf16) |
|
|
|