Add pipeline tag: text-generation
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,46 +1,47 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
}
|
|
|
|
| 46 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Introduction
|
| 10 |
+
|
| 11 |
+
This repository contains the checkpoints of ICLR 2025 paper **[“Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models](https://arxiv.org/pdf/2411.03884)”.**
|
| 12 |
+
In this work, we introduce a novel activation function called **Polynomial Composition (PolyCom)**, which enhances the expressiveness of large language models (LLMs) through dynamic polynomial compositions. Our method significantly improves the performance of dense and mixture of experts (MoE) models across a variety of downstream tasks, without adding significant computational overhead.
|
| 13 |
+
|
| 14 |
+
# Datasets and Training
|
| 15 |
+
|
| 16 |
+
We use the [RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) dataset and pretrain the PolyCom model on 250B tokens. For more training details, please refer to [the source code](https://github.com/BryceZhuo/PolyCom).
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Inference
|
| 20 |
+
|
| 21 |
+
Here is an example of how to use the PolyCom model for inference:
|
| 22 |
+
|
| 23 |
+
```python
|
| 24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 25 |
+
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(path_of_model, device_map="cuda",trust_remote_code=True)
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(path_of_model, padding_side="right",trust_remote_code=True)
|
| 28 |
+
|
| 29 |
+
prompt = "Hello, my name is"
|
| 30 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
|
| 31 |
+
|
| 32 |
+
greedy_output = model.generate(input_ids)
|
| 33 |
+
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Citing this work
|
| 38 |
+
|
| 39 |
+
If you find this work helpful or use it in your research, please consider citing our paper:
|
| 40 |
+
```bibtex
|
| 41 |
+
@inproceedings{zhuo2025polycom,
|
| 42 |
+
title={Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models},
|
| 43 |
+
author={Zhijian Zhuo and Ya Wang and Yutao Zeng and Xiaoqing Li and Xun Zhou and Jinwen Ma},
|
| 44 |
+
booktitle={ICLR 2025},
|
| 45 |
+
year={2025}
|
| 46 |
+
}
|
| 47 |
```
|