Phr00t's picture
Update Custom-Advanced-VACE-Node/nodes_utility.py
9e7a67a verified
import torch
import numpy as np
from comfy.utils import common_upscale
from .utils import log
from einops import rearrange
try:
from server import PromptServer
except:
PromptServer = None
VAE_STRIDE = (4, 8, 8)
PATCH_SIZE = (1, 2, 2)
class WanVideoImageResizeToClosest:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", {"tooltip": "Image to resize"}),
"generation_width": ("INT", {"default": 832, "min": 64, "max": 8096, "step": 8, "tooltip": "Width of the image to encode"}),
"generation_height": ("INT", {"default": 480, "min": 64, "max": 8096, "step": 8, "tooltip": "Height of the image to encode"}),
"aspect_ratio_preservation": (["keep_input", "stretch_to_new", "crop_to_new"],),
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT", )
RETURN_NAMES = ("image","width","height",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Resizes image to the closest supported resolution based on aspect ratio and max pixels, according to the original code"
def process(self, image, generation_width, generation_height, aspect_ratio_preservation ):
H, W = image.shape[1], image.shape[2]
max_area = generation_width * generation_height
crop = "disabled"
if aspect_ratio_preservation == "keep_input":
aspect_ratio = H / W
elif aspect_ratio_preservation == "stretch_to_new" or aspect_ratio_preservation == "crop_to_new":
aspect_ratio = generation_height / generation_width
if aspect_ratio_preservation == "crop_to_new":
crop = "center"
lat_h = round(
np.sqrt(max_area * aspect_ratio) // VAE_STRIDE[1] //
PATCH_SIZE[1] * PATCH_SIZE[1])
lat_w = round(
np.sqrt(max_area / aspect_ratio) // VAE_STRIDE[2] //
PATCH_SIZE[2] * PATCH_SIZE[2])
h = lat_h * VAE_STRIDE[1]
w = lat_w * VAE_STRIDE[2]
resized_image = common_upscale(image.movedim(-1, 1), w, h, "lanczos", crop).movedim(1, -1)
return (resized_image, w, h)
class ExtractStartFramesForContinuations:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_video_frames": ("IMAGE", {"tooltip": "Input video frames to extract the start frames from."}),
"num_frames": ("INT", {"default": 10, "min": 1, "max": 1024, "step": 1, "tooltip": "Number of frames to get from the start of the video."}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("start_frames",)
FUNCTION = "get_start_frames"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Extracts the first N frames from a video sequence for continuations."
def get_start_frames(self, input_video_frames, num_frames):
if input_video_frames is None or input_video_frames.shape[0] == 0:
log.warning("Input video frames are empty. Returning an empty tensor.")
if input_video_frames is not None:
return (torch.empty((0,) + input_video_frames.shape[1:], dtype=input_video_frames.dtype),)
else:
# Return a tensor with 4 dimensions, as expected for an IMAGE type.
return (torch.empty((0, 64, 64, 3), dtype=torch.float32),)
total_frames = input_video_frames.shape[0]
num_to_get = min(num_frames, total_frames)
if num_to_get < num_frames:
log.warning(f"Requested {num_frames} frames, but input video only has {total_frames} frames. Returning first {num_to_get} frames.")
start_frames = input_video_frames[:num_to_get]
return (start_frames.cpu().float(),)
class WanVideoVACEStartToEndFrame:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"num_frames": ("INT", {"default": 81, "min": 1, "max": 10000, "step": 4, "tooltip": "Number of frames to encode"}),
"empty_frame_level": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "White level of empty frame to use"}),
},
"optional": {
"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
"control_images": ("IMAGE",),
"inpaint_mask": ("MASK", {"tooltip": "Inpaint mask to use for the empty frames"}),
"start_index": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1, "tooltip": "Index to start from"}),
"end_index": ("INT", {"default": -1, "min": -10000, "max": 10000, "step": 1, "tooltip": "Index to end at"}),
"control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01, "tooltip": "How much does the control images apply?"}),
"control_ease": ("INT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 1, "tooltip": "How many frames to ease in the control video?"}),
},
}
RETURN_TYPES = ("IMAGE", "MASK", )
RETURN_NAMES = ("images", "masks",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to create start/end frame batch and masks for VACE"
def process(self, num_frames, empty_frame_level, start_image=None, end_image=None, control_images=None, inpaint_mask=None, start_index=0, end_index=-1, control_strength=1.0, control_ease=0):
device = start_image.device if start_image is not None else end_image.device
B, H, W, C = start_image.shape if start_image is not None else end_image.shape
if control_images is not None:
# weaken the control images?
if control_strength < 1.0:
# strength happens at much smaller number
control_strength *= 2.0
control_strength = control_strength * control_strength / 8.0
control_images = torch.lerp(torch.ones((control_images.shape[0], control_images.shape[1], control_images.shape[2], control_images.shape[3])) * empty_frame_level, control_images, control_strength)
# ease in control stuff?
if num_frames > control_ease and control_ease > 0:
empty_frame = torch.ones((1, control_images.shape[1], control_images.shape[2], control_images.shape[3])) * empty_frame_level
if start_image is not None:
for i in range(1, control_ease + 1):
control_images[i] = torch.lerp(control_images[i], empty_frame, (control_ease - i) / (1 + control_ease))
else:
for i in range(num_frames - control_ease - 1, num_frames - 1):
control_images[i] = torch.lerp(control_images[i], empty_frame, i / (1 + control_ease))
if start_image is None and end_image is None and control_images is not None:
if control_images.shape[0] >= num_frames:
control_images = control_images[:num_frames]
elif control_images.shape[0] < num_frames:
# padd with empty_frame_level frames
padding = torch.ones((num_frames - control_images.shape[0], control_images.shape[1], control_images.shape[2], control_images.shape[3]), device=control_images.device) * empty_frame_level
control_images = torch.cat([control_images, padding], dim=0)
return (control_images.cpu().float(), torch.zeros_like(control_images[:, :, :, 0]).cpu().float())
# Convert negative end_index to positive
if end_index < 0:
end_index = num_frames + end_index
# Create output batch with empty frames
out_batch = torch.ones((num_frames, H, W, 3), device=device) * empty_frame_level
# Create mask tensor with proper dimensions
masks = torch.ones((num_frames, H, W), device=device)
# Pre-process all images at once to avoid redundant work
if end_image is not None and (end_image.shape[1] != H or end_image.shape[2] != W):
end_image = common_upscale(end_image.movedim(-1, 1), W, H, "lanczos", "disabled").movedim(1, -1)
if control_images is not None and (control_images.shape[1] != H or control_images.shape[2] != W):
control_images = common_upscale(control_images.movedim(-1, 1), W, H, "lanczos", "disabled").movedim(1, -1)
# Place start image at start_index
if start_image is not None:
frames_to_copy = min(start_image.shape[0], num_frames - start_index)
if frames_to_copy > 0:
out_batch[start_index:start_index + frames_to_copy] = start_image[:frames_to_copy]
masks[start_index:start_index + frames_to_copy] = 0
# Place end image at end_index
if end_image is not None:
# Calculate where to start placing end images
end_start = end_index - end_image.shape[0] + 1
if end_start < 0: # Handle case where end images won't all fit
end_image = end_image[abs(end_start):]
end_start = 0
frames_to_copy = min(end_image.shape[0], num_frames - end_start)
if frames_to_copy > 0:
out_batch[end_start:end_start + frames_to_copy] = end_image[:frames_to_copy]
masks[end_start:end_start + frames_to_copy] = 0
# Apply control images to remaining frames that don't have start or end images
if control_images is not None:
# Create a mask of frames that are still empty (mask == 1)
empty_frames = masks.sum(dim=(1, 2)) > 0.5 * H * W
if empty_frames.any():
# Only apply control images where they exist
control_length = control_images.shape[0]
for frame_idx in range(num_frames):
if empty_frames[frame_idx] and frame_idx < control_length:
out_batch[frame_idx] = control_images[frame_idx]
# Apply inpaint mask if provided
if inpaint_mask is not None:
inpaint_mask = common_upscale(inpaint_mask.unsqueeze(1), W, H, "nearest-exact", "disabled").squeeze(1).to(device)
# Handle different mask lengths efficiently
if inpaint_mask.shape[0] > num_frames:
inpaint_mask = inpaint_mask[:num_frames]
elif inpaint_mask.shape[0] < num_frames:
repeat_factor = (num_frames + inpaint_mask.shape[0] - 1) // inpaint_mask.shape[0] # Ceiling division
inpaint_mask = inpaint_mask.repeat(repeat_factor, 1, 1)[:num_frames]
# Apply mask in one operation
masks = inpaint_mask * masks
return (out_batch.cpu().float(), masks.cpu().float())
class CreateCFGScheduleFloatList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 30, "min": 2, "max": 1000, "step": 1, "tooltip": "Number of steps to schedule cfg for"} ),
"cfg_scale_start": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 30.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"cfg_scale_end": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 30.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"interpolation": (["linear", "ease_in", "ease_out"], {"default": "linear", "tooltip": "Interpolation method to use for the cfg scale"}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "Start percent of the steps to apply cfg"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "End percent of the steps to apply cfg"}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("FLOAT", )
RETURN_NAMES = ("float_list",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to generate a list of floats that can be used to schedule cfg scale for the steps, outside the set range cfg is set to 1.0"
def process(self, steps, cfg_scale_start, cfg_scale_end, interpolation, start_percent, end_percent, unique_id):
# Create a list of floats for the cfg schedule
cfg_list = [1.0] * steps
start_idx = min(int(steps * start_percent), steps - 1)
end_idx = min(int(steps * end_percent), steps - 1)
for i in range(start_idx, end_idx + 1):
if i >= steps:
break
if end_idx == start_idx:
t = 0
else:
t = (i - start_idx) / (end_idx - start_idx)
if interpolation == "linear":
factor = t
elif interpolation == "ease_in":
factor = t * t
elif interpolation == "ease_out":
factor = t * (2 - t)
cfg_list[i] = round(cfg_scale_start + factor * (cfg_scale_end - cfg_scale_start), 2)
# If start_percent > 0, always include the first step
if start_percent > 0:
cfg_list[0] = 1.0
if unique_id and PromptServer is not None:
try:
PromptServer.instance.send_progress_text(
f"{cfg_list}",
unique_id
)
except:
pass
return (cfg_list,)
class CreateScheduleFloatList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 30, "min": 2, "max": 1000, "step": 1, "tooltip": "Number of steps to schedule cfg for"} ),
"start_value": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"end_value": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01, "tooltip": "CFG scale to use for the steps"}),
"default_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01, "round": 0.01, "tooltip": "Default value to use for the steps"}),
"interpolation": (["linear", "ease_in", "ease_out"], {"default": "linear", "tooltip": "Interpolation method to use for the cfg scale"}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "Start percent of the steps to apply cfg"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "round": 0.01,"tooltip": "End percent of the steps to apply cfg"}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("FLOAT", )
RETURN_NAMES = ("float_list",)
FUNCTION = "process"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to generate a list of floats that can be used to schedule things like cfg and lora scale per step"
def process(self, steps, start_value, end_value, default_value,interpolation, start_percent, end_percent, unique_id):
# Create a list of floats for the cfg schedule
cfg_list = [default_value] * steps
start_idx = min(int(steps * start_percent), steps - 1)
end_idx = min(int(steps * end_percent), steps - 1)
for i in range(start_idx, end_idx + 1):
if i >= steps:
break
if end_idx == start_idx:
t = 0
else:
t = (i - start_idx) / (end_idx - start_idx)
if interpolation == "linear":
factor = t
elif interpolation == "ease_in":
factor = t * t
elif interpolation == "ease_out":
factor = t * (2 - t)
cfg_list[i] = round(start_value + factor * (end_value - start_value), 2)
# If start_percent > 0, always include the first step
if start_percent > 0:
cfg_list[0] = default_value
if unique_id and PromptServer is not None:
try:
PromptServer.instance.send_progress_text(
f"{cfg_list}",
unique_id
)
except:
pass
return (cfg_list,)
class DummyComfyWanModelObject:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"shift": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "Sigma shift value"}),
}
}
RETURN_TYPES = ("MODEL", )
RETURN_NAMES = ("model",)
FUNCTION = "create"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Helper node to create empty Wan model to use with BasicScheduler -node to get sigmas"
def create(self, shift):
from comfy.model_sampling import ModelSamplingDiscreteFlow
class DummyModel:
def get_model_object(self, name):
if name == "model_sampling":
model_sampling = ModelSamplingDiscreteFlow()
model_sampling.set_parameters(shift=shift)
return model_sampling
return None
return (DummyModel(),)
class WanVideoLatentReScale:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT",),
"direction": (["comfy_to_wrapper", "wrapper_to_comfy"], {"tooltip": "Direction to rescale latents, from comfy to wrapper or vice versa"}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "encode"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Rescale latents to match the expected range for encoding or decoding between native ComfyUI VAE and the WanVideoWrapper VAE."
def encode(self, samples, direction):
samples = samples.copy()
latents = samples["samples"]
if latents.shape[1] == 48:
mean = [
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
]
std = [
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]
else:
mean = [
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]
std = [
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]
mean = torch.tensor(mean).view(1, latents.shape[1], 1, 1, 1)
std = torch.tensor(std).view(1, latents.shape[1], 1, 1, 1)
inv_std = (1.0 / std).view(1, latents.shape[1], 1, 1, 1)
if direction == "comfy_to_wrapper":
latents = (latents - mean.to(latents)) * inv_std.to(latents)
elif direction == "wrapper_to_comfy":
latents = latents / inv_std.to(latents) + mean.to(latents)
samples["samples"] = latents
return (samples,)
class WanVideoSigmaToStep:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.001}),
},
}
RETURN_TYPES = ("INT", )
RETURN_NAMES = ("step",)
FUNCTION = "convert"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Simply passes a float value as an integer, used to set start/end steps with sigma threshold"
def convert(self, sigma):
return (sigma,)
class NormalizeAudioLoudness:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"audio": ("AUDIO",),
"lufs": ("FLOAT", {"default": -23.0, "min": -100.0, "max": 0.0, "step": 0.1, "tool": "Loudness Units relative to Full Scale, higher LUFS values (closer to 0) mean louder audio. Lower LUFS values (more negative) mean quieter audio."}),
},
}
RETURN_TYPES = ("AUDIO", )
RETURN_NAMES = ("audio", )
FUNCTION = "normalize"
CATEGORY = "WanVideoWrapper"
def normalize(self, audio, lufs):
audio_input = audio["waveform"]
sample_rate = audio["sample_rate"]
if audio_input.dim() == 3:
audio_input = audio_input.squeeze(0)
audio_input_np = audio_input.detach().transpose(0, 1).numpy().astype(np.float32)
audio_input_np = np.ascontiguousarray(audio_input_np)
normalized_audio = self.loudness_norm(audio_input_np, sr=sample_rate, lufs=lufs)
out_audio = {"waveform": torch.from_numpy(normalized_audio).transpose(0, 1).unsqueeze(0).float(), "sample_rate": sample_rate}
return (out_audio, )
def loudness_norm(self, audio_array, sr=16000, lufs=-23):
try:
import pyloudnorm
except:
raise ImportError("pyloudnorm package is not installed")
meter = pyloudnorm.Meter(sr)
loudness = meter.integrated_loudness(audio_array)
if abs(loudness) > 100:
return audio_array
normalized_audio = pyloudnorm.normalize.loudness(audio_array, loudness, lufs)
return normalized_audio
class WanVideoPassImagesFromSamples:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples": ("LATENT",),
}
}
RETURN_TYPES = ("IMAGE", "STRING",)
RETURN_NAMES = ("images", "output_path",)
OUTPUT_TOOLTIPS = ("Decoded images from the samples dictionary", "Output path if provided in the samples dictionary",)
FUNCTION = "decode"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Gets possible already decoded images from the samples dictionary, used with Multi/InfiniteTalk sampling"
def decode(self, samples):
video = samples.get("video", None)
video.clamp_(-1.0, 1.0)
video.add_(1.0).div_(2.0)
return video.cpu().float(), samples.get("output_path", "")
class FaceMaskFromPoseKeypoints:
@classmethod
def INPUT_TYPES(s):
input_types = {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"person_index": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "Index of the person to start with"}),
}
}
return input_types
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def createmask(self, pose_kps, person_index):
pose_frames = pose_kps
prev_center = None
np_frames = []
for i, pose_frame in enumerate(pose_frames):
selected_idx, prev_center = self.select_closest_person(pose_frame, person_index if i == 0 else prev_center)
np_frames.append(self.draw_kps(pose_frame, selected_idx))
if not np_frames:
# Handle case where no frames were processed
log.warning("No valid pose frames found, returning empty mask")
return (torch.zeros((1, 64, 64), dtype=torch.float32),)
np_frames = np.stack(np_frames, axis=0)
tensor = torch.from_numpy(np_frames).float() / 255.
print("tensor.shape:", tensor.shape)
tensor = tensor[:, :, :, 0]
return (tensor,)
def select_closest_person(self, pose_frame, prev_center_or_index):
people = pose_frame["people"]
if not people:
return -1, None
centers = []
valid_people_indices = []
for idx, person in enumerate(people):
# Check if face keypoints exist and are valid
if "face_keypoints_2d" not in person or not person["face_keypoints_2d"]:
continue
kps = np.array(person["face_keypoints_2d"])
if len(kps) == 0:
continue
n = len(kps) // 3
if n == 0:
continue
facial_kps = rearrange(kps, "(n c) -> n c", n=n, c=3)[:, :2]
# Check if we have valid coordinates (not all zeros)
if np.all(facial_kps == 0):
continue
center = facial_kps.mean(axis=0)
# Check if center is valid (not NaN or infinite)
if np.isnan(center).any() or np.isinf(center).any():
continue
centers.append(center)
valid_people_indices.append(idx)
if not centers:
return -1, None
if isinstance(prev_center_or_index, (int, np.integer)):
# First frame: use person_index, but map to valid people
if 0 <= prev_center_or_index < len(valid_people_indices):
idx = valid_people_indices[prev_center_or_index]
return idx, centers[prev_center_or_index]
elif valid_people_indices:
# Fallback to first valid person
idx = valid_people_indices[0]
return idx, centers[0]
else:
return -1, None
elif prev_center_or_index is not None:
# Find closest to previous center
prev_center = np.array(prev_center_or_index)
dists = [np.linalg.norm(center - prev_center) for center in centers]
min_idx = int(np.argmin(dists))
actual_idx = valid_people_indices[min_idx]
return actual_idx, centers[min_idx]
else:
# prev_center_or_index is None, fallback to first valid person
if valid_people_indices:
idx = valid_people_indices[0]
return idx, centers[0]
else:
return -1, None
def draw_kps(self, pose_frame, person_index):
import cv2
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
canvas = np.zeros((height, width, 3), dtype=np.uint8)
people = pose_frame["people"]
if person_index < 0 or person_index >= len(people):
return canvas # Out of bounds, return blank
person = people[person_index]
# Check if face keypoints exist and are valid
if "face_keypoints_2d" not in person or not person["face_keypoints_2d"]:
return canvas # No face keypoints, return blank
face_kps_data = person["face_keypoints_2d"]
if len(face_kps_data) == 0:
return canvas # Empty keypoints, return blank
n = len(face_kps_data) // 3
if n < 17: # Need at least 17 points for outer contour
return canvas # Not enough keypoints, return blank
facial_kps = rearrange(np.array(face_kps_data), "(n c) -> n c", n=n, c=3)[:, :2]
# Check if we have valid coordinates (not all zeros)
if np.all(facial_kps == 0):
return canvas # All keypoints are zero, return blank
# Check for NaN or infinite values
if np.isnan(facial_kps).any() or np.isinf(facial_kps).any():
return canvas # Invalid coordinates, return blank
# Check for negative coordinates or coordinates that would create streaks
if np.any(facial_kps < 0):
return canvas # Negative coordinates, likely bad detection
# Check if coordinates are reasonable (not too close to edges which might indicate bad detection)
min_margin = 5 # Minimum distance from edges
if (np.any(facial_kps[:, 0] < min_margin) or
np.any(facial_kps[:, 1] < min_margin) or
np.any(facial_kps[:, 0] > width - min_margin) or
np.any(facial_kps[:, 1] > height - min_margin)):
# Check if this looks like a streak to corner (many points near 0,0)
corner_points = np.sum((facial_kps[:, 0] < min_margin) & (facial_kps[:, 1] < min_margin))
if corner_points > 3: # Too many points near corner, likely bad detection
return canvas
facial_kps = facial_kps.astype(np.int32)
# Ensure coordinates are within canvas bounds
facial_kps[:, 0] = np.clip(facial_kps[:, 0], 0, width - 1)
facial_kps[:, 1] = np.clip(facial_kps[:, 1], 0, height - 1)
part_color = (255, 255, 255)
outer_contour = facial_kps[:17]
# Additional validation for the contour before drawing
# Check if contour points are too spread out (indicating bad detection)
if len(outer_contour) >= 3:
# Calculate bounding box of the contour
min_x, min_y = np.min(outer_contour, axis=0)
max_x, max_y = np.max(outer_contour, axis=0)
contour_width = max_x - min_x
contour_height = max_y - min_y
# If contour spans more than 80% of canvas, likely bad detection
if (contour_width > 0.8 * width or contour_height > 0.8 * height):
return canvas
# Check if we have a valid contour (at least 3 unique points)
unique_points = np.unique(outer_contour, axis=0)
if len(unique_points) >= 3:
# Final check: ensure the contour is reasonable
# Calculate area to see if it's too large or too small
contour_area = cv2.contourArea(outer_contour)
canvas_area = width * height
# If contour is less than 0.1% or more than 50% of canvas, skip
if 0.001 * canvas_area <= contour_area <= 0.5 * canvas_area:
cv2.fillPoly(canvas, pts=[outer_contour], color=part_color)
return canvas
NODE_CLASS_MAPPINGS = {
"WanVideoImageResizeToClosest": WanVideoImageResizeToClosest,
"WanVideoVACEStartToEndFrame": WanVideoVACEStartToEndFrame,
"ExtractStartFramesForContinuations": ExtractStartFramesForContinuations,
"CreateCFGScheduleFloatList": CreateCFGScheduleFloatList,
"DummyComfyWanModelObject": DummyComfyWanModelObject,
"WanVideoLatentReScale": WanVideoLatentReScale,
"CreateScheduleFloatList": CreateScheduleFloatList,
"WanVideoSigmaToStep": WanVideoSigmaToStep,
"NormalizeAudioLoudness": NormalizeAudioLoudness,
"WanVideoPassImagesFromSamples": WanVideoPassImagesFromSamples,
"FaceMaskFromPoseKeypoints": FaceMaskFromPoseKeypoints,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"WanVideoImageResizeToClosest": "WanVideo Image Resize To Closest",
"WanVideoVACEStartToEndFrame": "WanVideo VACE Start To End Frame",
"ExtractStartFramesForContinuations": "Extract Start Frames For Continuations",
"CreateCFGScheduleFloatList": "Create CFG Schedule Float List",
"DummyComfyWanModelObject": "Dummy Comfy Wan Model Object",
"WanVideoLatentReScale": "WanVideo Latent ReScale",
"CreateScheduleFloatList": "Create Schedule Float List",
"WanVideoSigmaToStep": "WanVideo Sigma To Step",
"NormalizeAudioLoudness": "Normalize Audio Loudness",
"WanVideoPassImagesFromSamples": "WanVideo Pass Images From Samples",
"FaceMaskFromPoseKeypoints": "Face Mask From Pose Keypoints",
}