|
|
--- |
|
|
tags: |
|
|
- fp4 |
|
|
- vllm |
|
|
language: |
|
|
- en |
|
|
- de |
|
|
- fr |
|
|
- it |
|
|
- pt |
|
|
- hi |
|
|
- es |
|
|
- th |
|
|
pipeline_tag: text-generation |
|
|
license: apache-2.0 |
|
|
base_model: Qwen/Qwen3-8B |
|
|
--- |
|
|
|
|
|
# Qwen3-8B-NVFP4 |
|
|
|
|
|
## Model Overview |
|
|
- **Model Architecture:** Qwen/Qwen3-8B |
|
|
- **Input:** Text |
|
|
- **Output:** Text |
|
|
- **Model Optimizations:** |
|
|
- **Weight quantization:** FP4 |
|
|
- **Activation quantization:** FP4 |
|
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
|
- **Release Date:** 6/25/2025 |
|
|
- **Version:** 1.0 |
|
|
- **Model Developers:** RedHatAI |
|
|
|
|
|
This model is a quantized version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). |
|
|
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model. |
|
|
|
|
|
### Model Optimizations |
|
|
|
|
|
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) to FP4 data type, ready for inference with vLLM>=0.9.1 |
|
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. |
|
|
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor). |
|
|
|
|
|
## Deployment |
|
|
|
|
|
### Use with vLLM |
|
|
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
|
|
```python |
|
|
from vllm import LLM, SamplingParams |
|
|
from transformers import AutoTokenizer |
|
|
|
|
|
model_id = "RedHatAI/Qwen3-8B-NVFP4" |
|
|
number_gpus = 1 |
|
|
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
|
{"role": "user", "content": "Who are you?"}, |
|
|
] |
|
|
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
|
|
generated_text = outputs[0].outputs[0].text |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
|
|
## Creation |
|
|
|
|
|
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below. |
|
|
|
|
|
<details> |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
from llmcompressor import oneshot |
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
|
from llmcompressor.utils import dispatch_for_generation |
|
|
|
|
|
MODEL_ID = "Qwen/Qwen3-8B" |
|
|
|
|
|
# Load model. |
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto") |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
|
|
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
|
DATASET_SPLIT = "train_sft" |
|
|
|
|
|
# Select number of samples. 512 samples is a good place to start. |
|
|
# Increasing the number of samples can improve accuracy. |
|
|
NUM_CALIBRATION_SAMPLES = 512 |
|
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
|
|
# Load dataset and preprocess. |
|
|
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]") |
|
|
ds = ds.shuffle(seed=42) |
|
|
|
|
|
def preprocess(example): |
|
|
return { |
|
|
"text": tokenizer.apply_chat_template( |
|
|
example["messages"], |
|
|
tokenize=False, |
|
|
) |
|
|
} |
|
|
|
|
|
ds = ds.map(preprocess) |
|
|
|
|
|
# Tokenize inputs. |
|
|
def tokenize(sample): |
|
|
return tokenizer( |
|
|
sample["text"], |
|
|
padding=False, |
|
|
max_length=MAX_SEQUENCE_LENGTH, |
|
|
truncation=True, |
|
|
add_special_tokens=False, |
|
|
) |
|
|
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
|
|
# Configure the quantization algorithm and scheme. |
|
|
# In this case, we: |
|
|
# * quantize the weights to fp4 with per group 16 via ptq |
|
|
# * calibrate a global_scale for activations, which will be used to |
|
|
# quantize activations to fp4 on the fly |
|
|
smoothing_strength = 0.8 |
|
|
recipe = [ |
|
|
SmoothQuantModifier(smoothing_strength=smoothing_strength), |
|
|
QuantizationModifier( |
|
|
ignore=["re:.*lm_head.*"], |
|
|
config_groups={ |
|
|
"group_0": { |
|
|
"targets": ["Linear"], |
|
|
"weights": { |
|
|
"num_bits": 4, |
|
|
"type": "float", |
|
|
"strategy": "tensor_group", |
|
|
"group_size": 16, |
|
|
"symmetric": True, |
|
|
"observer": "mse", |
|
|
}, |
|
|
"input_activations": { |
|
|
"num_bits": 4, |
|
|
"type": "float", |
|
|
"strategy": "tensor_group", |
|
|
"group_size": 16, |
|
|
"symmetric": True, |
|
|
"dynamic": "local", |
|
|
"observer": "mse", |
|
|
}, |
|
|
} |
|
|
}, |
|
|
) |
|
|
] |
|
|
|
|
|
# Save to disk in compressed-tensors format. |
|
|
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4" |
|
|
|
|
|
# Apply quantization. |
|
|
oneshot( |
|
|
model=model, |
|
|
dataset=ds, |
|
|
recipe=recipe, |
|
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
|
output_dir=SAVE_DIR, |
|
|
) |
|
|
|
|
|
print("\n\n") |
|
|
print("========== SAMPLE GENERATION ==============") |
|
|
dispatch_for_generation(model) |
|
|
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
|
output = model.generate(input_ids, max_new_tokens=100) |
|
|
print(tokenizer.decode(output[0])) |
|
|
print("==========================================\n\n") |
|
|
|
|
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
|
tokenizer.save_pretrained(SAVE_DIR) |
|
|
``` |
|
|
</details> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval). |
|
|
|
|
|
### Accuracy |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Category</th> |
|
|
<th>Metric</th> |
|
|
<th>Qwen/Qwen3-8B</th> |
|
|
<th>Qwen3-8B-NVFP4 (this model)</th> |
|
|
<th>Recovery</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
|
<td>arc_challenge</td> |
|
|
<td>64.76</td> |
|
|
<td>63.91</td> |
|
|
<td>98.69</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>gsm8k</td> |
|
|
<td>87.26</td> |
|
|
<td>86.73</td> |
|
|
<td>99.39</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>hellaswag</td> |
|
|
<td>76.68</td> |
|
|
<td>75.34</td> |
|
|
<td>98.25</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>mmlu</td> |
|
|
<td>74.97</td> |
|
|
<td>73.07</td> |
|
|
<td>97.47</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>truthfulqa_mc2</td> |
|
|
<td>54.42</td> |
|
|
<td>55.07</td> |
|
|
<td>101.19</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>winogrande</td> |
|
|
<td>71.43</td> |
|
|
<td>68.43</td> |
|
|
<td>95.80</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average</b></td> |
|
|
<td><b>71.59</b></td> |
|
|
<td><b>70.43</b></td> |
|
|
<td><b>98.38</b></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
|
<td>BBH (3-shot)</td> |
|
|
<td>47.46</td> |
|
|
<td>49.33</td> |
|
|
<td>103.94</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MMLU-Pro (5-shot)</td> |
|
|
<td>34.64</td> |
|
|
<td>27.49</td> |
|
|
<td>79.36</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MuSR (0-shot)</td> |
|
|
<td>40.61</td> |
|
|
<td>42.86</td> |
|
|
<td>105.54</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>IFEval (0-shot)</td> |
|
|
<td>87.89</td> |
|
|
<td>87.65</td> |
|
|
<td>99.73</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GPQA (0-shot)</td> |
|
|
<td>25.17</td> |
|
|
<td>26.34</td> |
|
|
<td>104.65</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math-|v|-5 (4-shot)</td> |
|
|
<td>53.55</td> |
|
|
<td>50.83</td> |
|
|
<td>94.92</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average</b></td> |
|
|
<td><b>48.22</b></td> |
|
|
<td><b>47.42</b></td> |
|
|
<td><b>98.33</b></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="1"><b>Coding</b></td> |
|
|
<td>HumanEval_64 pass@2</td> |
|
|
<td>86.51</td> |
|
|
<td>85.32</td> |
|
|
<td>98.62</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="4"><b>Reasoning</b></td> |
|
|
<td>AIME24 (0-shot)</td> |
|
|
<td>75.86</td> |
|
|
<td>62.07</td> |
|
|
<td>81.82</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>AIME25 (0-shot)</td> |
|
|
<td>65.52</td> |
|
|
<td>62.07</td> |
|
|
<td>94.74</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GPQA (Diamond, 0-shot)</td> |
|
|
<td>59.90</td> |
|
|
<td>54.82</td> |
|
|
<td>91.51</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average</b></td> |
|
|
<td><b>67.09</b></td> |
|
|
<td><b>59.65</b></td> |
|
|
<td><b>89.36</b></td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Reproduction |
|
|
|
|
|
The results were obtained using the following commands: |
|
|
|
|
|
<details> |
|
|
|
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks openllm \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
|
|
|
#### OpenLLM v2 |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks leaderboard \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### HumanEval_64 |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks humaneval_64_instruct \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### LightEval |
|
|
``` |
|
|
# --- model_args.yaml --- |
|
|
cat > model_args.yaml <<'YAML' |
|
|
model_parameters: |
|
|
model_name: "RedHatAI/Qwen3-8B-NVFP4" |
|
|
dtype: auto |
|
|
gpu_memory_utilization: 0.9 |
|
|
tensor_parallel_size: 2 |
|
|
max_model_length: 40960 |
|
|
generation_parameters: |
|
|
seed: 42 |
|
|
temperature: 0.6 |
|
|
top_k: 20 |
|
|
top_p: 0.95 |
|
|
min_p: 0.0 |
|
|
max_new_tokens: 32768 |
|
|
YAML |
|
|
|
|
|
lighteval vllm model_args.yaml \ |
|
|
"lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \ |
|
|
--max-samples -1 \ |
|
|
--output-dir out_dir |
|
|
|
|
|
``` |
|
|
</details> |