Emotional Support Strategy Classifier
This model is a fine-tuned RoBERTa-base model for classifying emotional support conversation strategies.
Model Description
- Base Model: roberta-base
- Task: Multi-class text classification
- Training Data: ESConv (Emotional Support Conversation) dataset
- Number of Labels: 8
Labels
The model classifies text into 8 emotional support strategies:
- Affirmation and Reassurance
- Information
- Others
- Providing Suggestions
- Question
- Reflection of feelings
- Restatement or Paraphrasing
- Self-disclosure
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_name = "RyanDDD/empathy-strategy-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Example prediction
text = "I understand how you feel. It's completely normal to feel this way."
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1).item()
print(f"Predicted strategy: {model.config.id2label[predicted_class]}")
Training
Fine-tuned on the ESConv dataset using the Hugging Face Transformers library.
Citation
If you use this model, please cite the ESConv dataset:
@inproceedings{liu2021towards,
title={Towards Emotional Support Dialog Systems},
author={Liu, Siyang and Zheng, Chujie and Demasi, Orianna and Sabour, Sahand and Li, Yu and Yu, Zhou and Jiang, Yong and Huang, Minlie},
booktitle={Proceedings of ACL},
year={2021}
}
- Downloads last month
- 12