Whisper Small Fr - Radiologie2.0 Encoder-Layer[0:3]+ LoRa(VO; FFN)

This model is a fine-tuned version of StephaneBah/whisper-small-rad-fr1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8274
  • Wer: 34.4912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.25 100 0.8132 34.6130
No log 12.5 200 0.8152 34.3083
No log 18.75 300 0.8176 34.6740
No log 25.0 400 0.8215 34.3083
0.0001 31.25 500 0.8223 34.5521
0.0001 37.5 600 0.8245 34.5521
0.0001 43.75 700 0.8261 34.4912
0.0001 50.0 800 0.8273 34.4912
0.0001 56.25 900 0.8268 34.4912
0.0 62.5 1000 0.8274 34.4912

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
30
Safetensors
Model size
0.2B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for StephaneBah/whisper-small-rad-fr2.0_lora

Finetuned
(2)
this model