Whisper Small Fr - Radiologie2.0 Encoder-Layer[0:3]+ LoRa(QKVO; FFN)

This model is a fine-tuned version of StephaneBah/whisper-small-rad-fr1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8256
  • Wer: 34.6130

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.25 100 0.8140 34.4912
No log 12.5 200 0.8138 34.4912
No log 18.75 300 0.8165 34.4912
No log 25.0 400 0.8190 34.4302
0.0001 31.25 500 0.8202 34.5521
0.0001 37.5 600 0.8234 34.4302
0.0001 43.75 700 0.8248 34.4302
0.0001 50.0 800 0.8261 34.2474
0.0001 56.25 900 0.8266 34.6740
0.0 62.5 1000 0.8256 34.6130

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
8
Safetensors
Model size
0.3B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for StephaneBah/whisper-small-rad-fr2.0_lora2

Finetuned
(2)
this model