File size: 12,619 Bytes
3ef31d8
 
 
c81fc44
3e703ac
 
 
 
c81fc44
 
3ef31d8
 
c81fc44
 
 
 
 
 
a2503a4
c81fc44
 
 
 
 
3ef31d8
 
c81fc44
 
a2503a4
3ef31d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4de598
3ef31d8
 
 
 
 
 
 
 
 
 
 
 
 
e1120f0
3ef31d8
 
 
 
 
e1120f0
3ef31d8
 
 
c81fc44
 
 
 
 
 
 
 
 
 
3ef31d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81fc44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef31d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
license: apache-2.0
tags:
- vision-language
- cinematography
- shotbench
pipeline_tag: image-text-to-text
library_name: transformers
---

# ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models

This repository contains **ShotVL-3B**, a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), developed for expert-level cinematic understanding.

*   **Paper:** [ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models](https://arxiv.org/abs/2506.21356)
*   **Project Page:** [https://vchitect.github.io/ShotBench-project/](https://vchitect.github.io/ShotBench-project/)
*   **Code:** [https://github.com/Vchitect/ShotBench](https://github.com/Vchitect/ShotBench)

## Abstract

Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.

## Model description

This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), trained by supervised fine-tuning and GRPO on the largest and high-quality dataset for cinematic language understanding to date. It currently achieves state-of-the-art performance on [ShotBench](https://vchitect.github.io/ShotBench-project/), a comprehensive benchmark for evaluating cinematography understanding in vision-language models.

### Demo

**Image**
```python
import cv2
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info

device = "cuda"
device_map = "balanced"
dtype = torch.bfloat16
image_path = "/path/to/image.jpg"

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
  "Vchitect/ShotVL-3B",
  device_map=device_map,
  attn_implementation="flash_attention_2",
  torch_dtype=dtype,
).eval()
processor = AutoProcessor.from_pretrained(
  "Vchitect/ShotVL-3B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype
)

SYSTEM_PROMPT = (
    "A conversation between User and Assistant. The user asks a question, and the Assistant "
    "solves it. The assistant first thinks about the reasoning process in the mind and then "
    "provides the user with the answer. The reasoning process and answer are enclosed within "
    "<think> </think> and <answer> </answer> tags."
)

msgs = [
  {"role": "system", "content": SYSTEM_PROMPT},
  {
    "role": "user",
    "content": [
      {"type": "image", "image": image_path},
      {"type": "text", "text": "What's the shot size of this shot?"},
    ],
  },
]

text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(msgs)
inputs = processor(
  text=[text],
  images=image_inputs,
  videos=video_inputs,
  padding=True,
  return_tensors="pt",
).to(device)

with torch.inference_mode():
  out_ids = model.generate(**inputs, max_new_tokens=640)
  
trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
```

**Video**

```python
import cv2
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info

device = "cuda"
device_map = "balanced"
dtype = torch.bfloat16
video_path = "/path/to/video.mp4"

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
  "Vchitect/ShotVL-3B",
  device_map=device_map,
  attn_implementation="flash_attention_2",
  torch_dtype=dtype,
).eval()
processor = AutoProcessor.from_pretrained(
  "Vchitect/ShotVL-3B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype
)

question = (
    "What's the camera movement in this movie shot?
"
    "Options:
A. Boom down
B. Boom up
C. Push in
D. Pull out
"
    "Please select the most likely answer from the options above.
"
)

msgs = [
  {
    "role": "user",
    "content": [
      {"type": "video", "video": video_path, "max_pixels": 360*640, "fps": 12.0},
      {"type": "text", "text": question},
    ],
  },
]

text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(msgs)
inputs = processor(
  text=[text],
  images=image_inputs,
  videos=video_inputs,
  padding=True,
  return_tensors="pt",
).to(device)

with torch.inference_mode():
  out_ids = model.generate(**inputs, max_new_tokens=640)
  
trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
```

## Evaluation Results

<div align="center">
<table>
  <caption>
    <small>
      Abbreviations:&nbsp;
      SS = <em>Shot&nbsp;Size</em>,&nbsp;
      SF = <em>Shot&nbsp;Framing</em>,&nbsp;
      CA = <em>Camera&nbsp;Angle</em>,&nbsp;
      LS = <em>Lens&nbsp;Size</em>,&nbsp;
      LT = <em>Lighting&nbsp;Type</em>,&nbsp;
      LC = <em>Lighting&nbsp;Conditions</em>,&nbsp;
      SC = <em>Shot&nbsp;Composition</em>,&nbsp;
      CM = <em>Camera&nbsp;Movement</em>.&nbsp;
      <u>Underline</u> marks previous best in each group.<br>
      <strong>Our <em>ShotVL</em> models establish new SOTA.</strong>
    </small>
  </caption><thead>
    <tr>
      <th>Models</th><th>SS</th><th>SF</th><th>CA</th><th>LS</th><th>LT</th>
      <th>LC</th><th>SC</th><th>CM</th><th>Avg</th>
    </tr>
  </thead><tbody>
  <tr><th colspan="10"><em>Open-Sourced&nbsp;VLMs</em></th></tr>
                            <tr><td>Qwen2.5-VL-3B-Instruct</td><td>54.6</td><td>56.6</td><td>43.1</td><td>36.6</td><td>59.3</td><td>45.1</td><td>41.5</td><td>31.9</td><td>46.1</td></tr>
                            <tr><td>Qwen2.5-VL-7B-Instruct</td><td>69.1</td><td>73.5</td><td>53.2</td><td>47.0</td><td>60.5</td><td>47.4</td><td>49.9</td><td>30.2</td><td>53.8</td></tr>
                            <tr><td>LLaVA-NeXT-Video-7B</td><td>35.9</td><td>37.1</td><td>32.5</td><td>27.8</td><td>50.9</td><td>31.7</td><td>28.0</td><td>31.3</td><td>34.4</td></tr>
                            <tr><td>LLaVA-Video-7B-Qwen2</td><td>56.9</td><td>65.4</td><td>45.1</td><td>36.0</td><td>63.5</td><td>45.4</td><td>37.4</td><td>35.3</td><td>48.1</td></tr>
                            <tr><td>LLaVA-Onevision-Qwen2-7B-Ov-Chat</td><td>58.4</td><td>71.0</td><td>52.3</td><td>38.7</td><td>59.5</td><td>44.9</td><td>50.9</td><td>39.7</td><td>51.9</td></tr>
                            <tr><td>InternVL2.5-8B</td><td>56.3</td><td>70.3</td><td>50.8</td><td>41.1</td><td>60.2</td><td>45.1</td><td>50.1</td><td>33.6</td><td>50.9</td></tr>
                            <tr><td>InternVL3-2B</td><td>56.3</td><td>56.0</td><td>44.4</td><td>34.6</td><td>56.8</td><td>44.6</td><td>43.0</td><td>38.1</td><td>46.7</td></tr>
                            <tr><td>InternVL3-8B</td><td>62.1</td><td>65.8</td><td>46.8</td><td>42.9</td><td>58.0</td><td>44.3</td><td>46.8</td><td>44.2</td><td>51.4</td></tr>
                            <tr><td>InternVL3-14B</td><td>59.6</td><td>82.2</td><td>55.4</td><td>40.7</td><td>61.7</td><td>44.6</td><td>51.1</td><td>38.2</td><td>54.2</td></tr>
                            <tr><td>Internlm-xcomposer2d5-7B</td><td>51.1</td><td>71.0</td><td>39.8</td><td>32.7</td><td>59.3</td><td>35.7</td><td>35.7</td><td>38.8</td><td>45.5</td></tr>
                            <tr><td>Ovis2-8B</td><td>35.9</td><td>37.1</td><td>32.5</td><td>27.8</td><td>50.9</td><td>31.7</td><td>28.0</td><td>35.3</td><td>34.9</td></tr>
                            <tr><td>VILA1.5-3B</td><td>33.4</td><td>44.9</td><td>32.1</td><td>28.6</td><td>50.6</td><td>35.7</td><td>28.4</td><td>21.5</td><td>34.4</td></tr>
                            <tr><td>VILA1.5-8B</td><td>40.6</td><td>44.5</td><td>39.1</td><td>29.7</td><td>48.9</td><td>32.9</td><td>34.4</td><td>36.9</td><td>38.4</td></tr>
                            <tr><td>VILA1.5-13B</td><td>36.7</td><td>54.6</td><td>40.7</td><td>34.8</td><td>52.8</td><td>35.4</td><td>34.2</td><td>31.3</td><td>40.1</td></tr>
                            <tr><td>Instructblip-vicuna-7B</td><td>27.0</td><td>27.9</td><td>34.5</td><td>29.4</td><td>44.4</td><td>29.7</td><td>27.1</td><td>25.0</td><td>30.6</td></tr>
                            <tr><td>Instructblip-vicuna-13B</td><td>26.8</td><td>29.2</td><td>27.9</td><td>28.0</td><td>39.0</td><td>24.0</td><td>27.1</td><td>22.0</td><td>28.0</td></tr>
                            <tr><td>InternVL2.5-38B</td><td>67.8</td><td><u>85.4</u></td><td>55.4</td><td>41.7</td><td>61.7</td><td>48.9</td><td>52.4</td><td>44.0</td><td>57.2</td></tr>
                            <tr><td>InternVL3-38B</td><td>68.0</td><td>84.0</td><td>51.9</td><td>43.6</td><td>64.4</td><td>46.9</td><td>54.7</td><td>44.6</td><td>57.3</td></tr>
                            <tr><td>Qwen2.5-VL-32B-Instruct</td><td>62.3</td><td>76.6</td><td>51.0</td><td>48.3</td><td>61.7</td><td>44.0</td><td>52.2</td><td>43.8</td><td>55.0</td></tr>
                            <tr><td>Qwen2.5-VL-72B-Instruct</td><td><u>75.1</u></td><td>82.9</td><td>56.7</td><td>46.8</td><td>59.0</td><td><u>49.4</u></td><td>54.1</td><td><u>48.9</u></td><td>59.1</td></tr>
                            <tr><td>InternVL3-78B</td><td>69.7</td><td>80.0</td><td>54.5</td><td>44.0</td><td><u>65.5</u></td><td>47.4</td><td>51.8</td><td>44.4</td><td>57.2</td></tr>
<tr><th colspan="10"><em>Proprietary&nbsp;VLMs</em></th></tr>
                            <tr><td>Gemini-2.0-flash</td><td>48.9</td><td>75.5</td><td>44.6</td><td>31.9</td><td>62.2</td><td>48.9</td><td>52.4</td><td>47.4</td><td>51.5</td></tr>
                            <tr><td>Gemini-2.5-flash-preview-04-17</td><td>57.7</td><td>82.9</td><td>51.4</td><td>43.8</td><td>65.2</td><td>45.7</td><td>45.9</td><td>43.5</td><td>54.5</td></tr>
                            <tr><td>GPT-4o</td><td>69.3</td><td>83.1</td><td><u>58.2</u></td><td><u>48.9</u></td><td>63.2</td><td>48.0</td><td><u>55.2</u></td><td>48.3</td><td><u>59.3</u></td></tr>
<tr><th colspan="10"><em>Ours</em></th></tr>
<tr>
  <td>ShotVL-3B
    <a href="https://huggingface.co/Vchitect/ShotVL-3B">
      <img src="https://img.shields.io/badge/Model-HF-yellow?logo=huggingface" alt="HF">
    </a>
  </td>
  <td>77.9</td><td>85.6</td><td>68.8</td><td>59.3</td><td>65.7</td>
  <td>53.1</td><td>57.4</td><td>51.7</td><td>65.1</td>
</tr>
<tr>
  <td>ShotVL-7B
    <a href="https://huggingface.co/Vchitect/ShotVL-7B">
      <img src="https://img.shields.io/badge/Model-HF-yellow?logo=huggingface" alt="HF">
    </a>
  </td>
  <td>81.2</td><td>90.1</td><td>78.0</td><td>68.5</td><td>70.1</td>
  <td>64.3</td><td>45.7</td><td>62.9</td><td>70.1</td>
</tr>  </tbody>
</table></div>

## BibTeX

```
@misc{
      liu2025shotbench,
      title={ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models}, 
      author={Hongbo Liu and Jingwen He and Yi Jin and Dian Zheng and Yuhao Dong and Fan Zhang and Ziqi Huang and Yinan He and Yangguang Li and Weichao Chen and Yu Qiao and Wanli Ouyang and Shengjie Zhao and Ziwei Liu},
      year={2025},
      eprint={2506.21356},
      achivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2506.21356}, 
    }
```