EditMGT Model for HuggingFace Transformers
This repository contains a HuggingFace Transformers-compatible implementation of the EditMGT model for image editing based on text instructions.
Installation
pip install transformers pillow
# Install other required dependencies from the original EditMGT repository
Usage
from eval.utils import init_edit_mgt
from src.v2_model import negative_prompt
from PIL import Image
# Initialize the pipeline
pipe = init_edit_mgt(
ckpt_path='./runs/editmgt-ct/checkpoint',
enable_fp16=False,
device='cuda:0',
use_ema=False
)
# Load your image
reference_image = Image.open("your_image.jpg").resize((1024, 1024))
# Generate edited image
result = pipe(
prompt=["Make the sky more blue and add clouds"],
negative_prompt=[negative_prompt],
height=1024,
width=1024,
num_inference_steps=36,
guidance_scale=6,
num_images_per_prompt=1,
reference_image=[reference_image],
reference_strength=1.1,
)
# Save the result
result.images[0].save("edited_image.png")
Citation
If you use this model, please cite the original work:
@article{editmgt2023,
title={EditMGT: Text-guided Image Editing with Masked Generative Transformer},
author={...},
journal={...},
year={2023}
}
- Downloads last month
- -