Yagna Assistant v3

Fine-tuned Qwen2.5-0.5B model trained on Yagna's professional background.

Model Details

  • Base Model: Qwen2.5-0.5B-Instruct
  • Training Method: QLoRA with enhanced configuration
  • LoRA Rank: 32
  • Training Steps: 250
  • Learning Rate: 1e-4
  • Dataset Size: 121 QA pairs

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Yagna1/yagna-assistant-v3")
tokenizer = AutoTokenizer.from_pretrained("Yagna1/yagna-assistant-v3")

# Ask a question
prompt = "What is your educational background?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Performance

Model achieves ~90% accuracy on test suite.

Downloads last month
5
Safetensors
Model size
0.5B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Yagna1/yagna-assistant-v3

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(527)
this model
Quantizations
1 model