SentenceTransformer based on codersan/FaLabse
This is a sentence-transformers model finetuned from codersan/FaLabse. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: codersan/FaLabse
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE_Mizan3")
# Run inference
sentences = [
'اگر این کار مداومت می\u200cیافت، سنگر قادر به مقاومت نمی\u200cبود.',
'If this were continued, the barricade was no longer tenable.',
'Well, for this moment she had a protector.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,021,596 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 18.63 tokens
- max: 81 tokens
- min: 3 tokens
- mean: 16.37 tokens
- max: 85 tokens
- Samples:
anchor positive دختران برای اطاعت امر پدر از جا برخاستند.They arose to obey.همه چیز را بم وقع خواهی دانست.You'll know it all in timeاو هر لحظه گرفتار یک وضع است، زارزار گریه میکند. میگوید به ما توهین کردهاند، حیثیتمان را لکهدار نمودند.She is in hysterics up there, and moans and says that we have been 'shamed and disgraced. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1load_best_model_at_end: Truepush_to_hub: Truehub_model_id: codersan/FaLaBSE_Mizan3eval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: codersan/FaLaBSE_Mizan3hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0 | 0 | - |
| 0.0016 | 100 | 0.067 |
| 0.0031 | 200 | 0.0623 |
| 0.0047 | 300 | 0.0887 |
| 0.0063 | 400 | 0.0615 |
| 0.0078 | 500 | 0.0647 |
| 0.0094 | 600 | 0.0599 |
| 0.0110 | 700 | 0.0504 |
| 0.0125 | 800 | 0.0548 |
| 0.0141 | 900 | 0.0491 |
| 0.0157 | 1000 | 0.0418 |
| 0.0172 | 1100 | 0.0484 |
| 0.0188 | 1200 | 0.0499 |
| 0.0204 | 1300 | 0.0604 |
| 0.0219 | 1400 | 0.0492 |
| 0.0235 | 1500 | 0.0619 |
| 0.0251 | 1600 | 0.0505 |
| 0.0266 | 1700 | 0.0552 |
| 0.0282 | 1800 | 0.0384 |
| 0.0298 | 1900 | 0.0456 |
| 0.0313 | 2000 | 0.0459 |
| 0.0329 | 2100 | 0.0385 |
| 0.0345 | 2200 | 0.0493 |
| 0.0360 | 2300 | 0.0483 |
| 0.0376 | 2400 | 0.0398 |
| 0.0392 | 2500 | 0.0392 |
| 0.0407 | 2600 | 0.0652 |
| 0.0423 | 2700 | 0.0323 |
| 0.0439 | 2800 | 0.0521 |
| 0.0454 | 2900 | 0.0424 |
| 0.0470 | 3000 | 0.0334 |
| 0.0486 | 3100 | 0.0457 |
| 0.0501 | 3200 | 0.0349 |
| 0.0517 | 3300 | 0.032 |
| 0.0532 | 3400 | 0.0334 |
| 0.0548 | 3500 | 0.0442 |
| 0.0564 | 3600 | 0.0414 |
| 0.0579 | 3700 | 0.0555 |
| 0.0595 | 3800 | 0.0378 |
| 0.0611 | 3900 | 0.0583 |
| 0.0626 | 4000 | 0.0452 |
| 0.0642 | 4100 | 0.0406 |
| 0.0658 | 4200 | 0.0461 |
| 0.0673 | 4300 | 0.0433 |
| 0.0689 | 4400 | 0.0371 |
| 0.0705 | 4500 | 0.0392 |
| 0.0720 | 4600 | 0.0434 |
| 0.0736 | 4700 | 0.046 |
| 0.0752 | 4800 | 0.0477 |
| 0.0767 | 4900 | 0.06 |
| 0.0783 | 5000 | 0.0415 |
| 0.0799 | 5100 | 0.0434 |
| 0.0814 | 5200 | 0.0495 |
| 0.0830 | 5300 | 0.043 |
| 0.0846 | 5400 | 0.0515 |
| 0.0861 | 5500 | 0.0457 |
| 0.0877 | 5600 | 0.0444 |
| 0.0893 | 5700 | 0.0454 |
| 0.0908 | 5800 | 0.0575 |
| 0.0924 | 5900 | 0.0394 |
| 0.0940 | 6000 | 0.0554 |
| 0.0955 | 6100 | 0.0362 |
| 0.0971 | 6200 | 0.0381 |
| 0.0987 | 6300 | 0.0446 |
| 0.1002 | 6400 | 0.0426 |
| 0.1018 | 6500 | 0.0606 |
| 0.1034 | 6600 | 0.052 |
| 0.1049 | 6700 | 0.0414 |
| 0.1065 | 6800 | 0.059 |
| 0.1081 | 6900 | 0.0485 |
| 0.1096 | 7000 | 0.0488 |
| 0.1112 | 7100 | 0.0312 |
| 0.1128 | 7200 | 0.0662 |
| 0.1143 | 7300 | 0.0495 |
| 0.1159 | 7400 | 0.0529 |
| 0.1175 | 7500 | 0.0598 |
| 0.1190 | 7600 | 0.0465 |
| 0.1206 | 7700 | 0.0577 |
| 0.1222 | 7800 | 0.0571 |
| 0.1237 | 7900 | 0.055 |
| 0.1253 | 8000 | 0.0679 |
| 0.1269 | 8100 | 0.0525 |
| 0.1284 | 8200 | 0.0427 |
| 0.1300 | 8300 | 0.0534 |
| 0.1316 | 8400 | 0.0593 |
| 0.1331 | 8500 | 0.0483 |
| 0.1347 | 8600 | 0.0437 |
| 0.1363 | 8700 | 0.0505 |
| 0.1378 | 8800 | 0.0462 |
| 0.1394 | 8900 | 0.0411 |
| 0.1410 | 9000 | 0.0665 |
| 0.1425 | 9100 | 0.0338 |
| 0.1441 | 9200 | 0.0512 |
| 0.1457 | 9300 | 0.0683 |
| 0.1472 | 9400 | 0.077 |
| 0.1488 | 9500 | 0.0469 |
| 0.1504 | 9600 | 0.0408 |
| 0.1519 | 9700 | 0.0374 |
| 0.1535 | 9800 | 0.0422 |
| 0.1551 | 9900 | 0.0429 |
| 0.1566 | 10000 | 0.0466 |
| 0.1582 | 10100 | 0.0504 |
| 0.1597 | 10200 | 0.0401 |
| 0.1613 | 10300 | 0.0384 |
| 0.1629 | 10400 | 0.0554 |
| 0.1644 | 10500 | 0.0515 |
| 0.1660 | 10600 | 0.0529 |
| 0.1676 | 10700 | 0.0413 |
| 0.1691 | 10800 | 0.0386 |
| 0.1707 | 10900 | 0.046 |
| 0.1723 | 11000 | 0.059 |
| 0.1738 | 11100 | 0.0716 |
| 0.1754 | 11200 | 0.0496 |
| 0.1770 | 11300 | 0.0541 |
| 0.1785 | 11400 | 0.0499 |
| 0.1801 | 11500 | 0.0486 |
| 0.1817 | 11600 | 0.0446 |
| 0.1832 | 11700 | 0.0508 |
| 0.1848 | 11800 | 0.0451 |
| 0.1864 | 11900 | 0.0379 |
| 0.1879 | 12000 | 0.0515 |
| 0.1895 | 12100 | 0.0422 |
| 0.1911 | 12200 | 0.0335 |
| 0.1926 | 12300 | 0.0408 |
| 0.1942 | 12400 | 0.0584 |
| 0.1958 | 12500 | 0.0524 |
| 0.1973 | 12600 | 0.0562 |
| 0.1989 | 12700 | 0.0399 |
| 0.2005 | 12800 | 0.0465 |
| 0.2020 | 12900 | 0.0334 |
| 0.2036 | 13000 | 0.0471 |
| 0.2052 | 13100 | 0.0462 |
| 0.2067 | 13200 | 0.0419 |
| 0.2083 | 13300 | 0.0398 |
| 0.2099 | 13400 | 0.0581 |
| 0.2114 | 13500 | 0.037 |
| 0.2130 | 13600 | 0.0328 |
| 0.2146 | 13700 | 0.0466 |
| 0.2161 | 13800 | 0.0343 |
| 0.2177 | 13900 | 0.0491 |
| 0.2193 | 14000 | 0.0485 |
| 0.2208 | 14100 | 0.0417 |
| 0.2224 | 14200 | 0.0603 |
| 0.2240 | 14300 | 0.0392 |
| 0.2255 | 14400 | 0.0605 |
| 0.2271 | 14500 | 0.0369 |
| 0.2287 | 14600 | 0.0368 |
| 0.2302 | 14700 | 0.0418 |
| 0.2318 | 14800 | 0.0471 |
| 0.2334 | 14900 | 0.0521 |
| 0.2349 | 15000 | 0.0455 |
| 0.2365 | 15100 | 0.0371 |
| 0.2381 | 15200 | 0.044 |
| 0.2396 | 15300 | 0.0388 |
| 0.2412 | 15400 | 0.0445 |
| 0.2428 | 15500 | 0.0608 |
| 0.2443 | 15600 | 0.0552 |
| 0.2459 | 15700 | 0.0416 |
| 0.2475 | 15800 | 0.0395 |
| 0.2490 | 15900 | 0.0285 |
| 0.2506 | 16000 | 0.0513 |
| 0.2522 | 16100 | 0.0524 |
| 0.2537 | 16200 | 0.0379 |
| 0.2553 | 16300 | 0.0321 |
| 0.2569 | 16400 | 0.0405 |
| 0.2584 | 16500 | 0.0448 |
| 0.2600 | 16600 | 0.0362 |
| 0.2616 | 16700 | 0.0516 |
| 0.2631 | 16800 | 0.068 |
| 0.2647 | 16900 | 0.057 |
| 0.2662 | 17000 | 0.046 |
| 0.2678 | 17100 | 0.0349 |
| 0.2694 | 17200 | 0.0502 |
| 0.2709 | 17300 | 0.0508 |
| 0.2725 | 17400 | 0.0575 |
| 0.2741 | 17500 | 0.0369 |
| 0.2756 | 17600 | 0.0385 |
| 0.2772 | 17700 | 0.0441 |
| 0.2788 | 17800 | 0.0455 |
| 0.2803 | 17900 | 0.0404 |
| 0.2819 | 18000 | 0.057 |
| 0.2835 | 18100 | 0.0328 |
| 0.2850 | 18200 | 0.0577 |
| 0.2866 | 18300 | 0.0355 |
| 0.2882 | 18400 | 0.0629 |
| 0.2897 | 18500 | 0.0703 |
| 0.2913 | 18600 | 0.0464 |
| 0.2929 | 18700 | 0.0624 |
| 0.2944 | 18800 | 0.027 |
| 0.2960 | 18900 | 0.0541 |
| 0.2976 | 19000 | 0.0361 |
| 0.2991 | 19100 | 0.0494 |
| 0.3007 | 19200 | 0.0652 |
| 0.3023 | 19300 | 0.0574 |
| 0.3038 | 19400 | 0.0451 |
| 0.3054 | 19500 | 0.0443 |
| 0.3070 | 19600 | 0.0571 |
| 0.3085 | 19700 | 0.0553 |
| 0.3101 | 19800 | 0.042 |
| 0.3117 | 19900 | 0.0583 |
| 0.3132 | 20000 | 0.0394 |
| 0.3148 | 20100 | 0.0378 |
| 0.3164 | 20200 | 0.042 |
| 0.3179 | 20300 | 0.0391 |
| 0.3195 | 20400 | 0.0452 |
| 0.3211 | 20500 | 0.0421 |
| 0.3226 | 20600 | 0.0348 |
| 0.3242 | 20700 | 0.0332 |
| 0.3258 | 20800 | 0.0612 |
| 0.3273 | 20900 | 0.0492 |
| 0.3289 | 21000 | 0.0319 |
| 0.3305 | 21100 | 0.0432 |
| 0.3320 | 21200 | 0.0339 |
| 0.3336 | 21300 | 0.0441 |
| 0.3352 | 21400 | 0.0652 |
| 0.3367 | 21500 | 0.044 |
| 0.3383 | 21600 | 0.0459 |
| 0.3399 | 21700 | 0.0571 |
| 0.3414 | 21800 | 0.0357 |
| 0.3430 | 21900 | 0.0378 |
| 0.3446 | 22000 | 0.0364 |
| 0.3461 | 22100 | 0.0381 |
| 0.3477 | 22200 | 0.0214 |
| 0.3493 | 22300 | 0.0424 |
| 0.3508 | 22400 | 0.054 |
| 0.3524 | 22500 | 0.0272 |
| 0.3540 | 22600 | 0.0478 |
| 0.3555 | 22700 | 0.0438 |
| 0.3571 | 22800 | 0.0519 |
| 0.3587 | 22900 | 0.0666 |
| 0.3602 | 23000 | 0.06 |
| 0.3618 | 23100 | 0.0462 |
| 0.3634 | 23200 | 0.0447 |
| 0.3649 | 23300 | 0.0426 |
| 0.3665 | 23400 | 0.0518 |
| 0.3681 | 23500 | 0.0443 |
| 0.3696 | 23600 | 0.0585 |
| 0.3712 | 23700 | 0.0356 |
| 0.3727 | 23800 | 0.0511 |
| 0.3743 | 23900 | 0.044 |
| 0.3759 | 24000 | 0.0342 |
| 0.3774 | 24100 | 0.0272 |
| 0.3790 | 24200 | 0.0602 |
| 0.3806 | 24300 | 0.0438 |
| 0.3821 | 24400 | 0.027 |
| 0.3837 | 24500 | 0.0485 |
| 0.3853 | 24600 | 0.0404 |
| 0.3868 | 24700 | 0.0562 |
| 0.3884 | 24800 | 0.0334 |
| 0.3900 | 24900 | 0.0354 |
| 0.3915 | 25000 | 0.0558 |
| 0.3931 | 25100 | 0.0366 |
| 0.3947 | 25200 | 0.0387 |
| 0.3962 | 25300 | 0.0302 |
| 0.3978 | 25400 | 0.0554 |
| 0.3994 | 25500 | 0.0317 |
| 0.4009 | 25600 | 0.0418 |
| 0.4025 | 25700 | 0.0534 |
| 0.4041 | 25800 | 0.0331 |
| 0.4056 | 25900 | 0.0489 |
| 0.4072 | 26000 | 0.0428 |
| 0.4088 | 26100 | 0.0273 |
| 0.4103 | 26200 | 0.0346 |
| 0.4119 | 26300 | 0.041 |
| 0.4135 | 26400 | 0.027 |
| 0.4150 | 26500 | 0.025 |
| 0.4166 | 26600 | 0.0522 |
| 0.4182 | 26700 | 0.0319 |
| 0.4197 | 26800 | 0.0461 |
| 0.4213 | 26900 | 0.031 |
| 0.4229 | 27000 | 0.0318 |
| 0.4244 | 27100 | 0.0412 |
| 0.4260 | 27200 | 0.0388 |
| 0.4276 | 27300 | 0.0336 |
| 0.4291 | 27400 | 0.0345 |
| 0.4307 | 27500 | 0.0403 |
| 0.4323 | 27600 | 0.0567 |
| 0.4338 | 27700 | 0.0378 |
| 0.4354 | 27800 | 0.0438 |
| 0.4370 | 27900 | 0.0419 |
| 0.4385 | 28000 | 0.0533 |
| 0.4401 | 28100 | 0.0569 |
| 0.4417 | 28200 | 0.0458 |
| 0.4432 | 28300 | 0.0293 |
| 0.4448 | 28400 | 0.0501 |
| 0.4464 | 28500 | 0.0616 |
| 0.4479 | 28600 | 0.0526 |
| 0.4495 | 28700 | 0.0332 |
| 0.4511 | 28800 | 0.0367 |
| 0.4526 | 28900 | 0.0334 |
| 0.4542 | 29000 | 0.0332 |
| 0.4558 | 29100 | 0.0296 |
| 0.4573 | 29200 | 0.0504 |
| 0.4589 | 29300 | 0.0444 |
| 0.4605 | 29400 | 0.0404 |
| 0.4620 | 29500 | 0.0396 |
| 0.4636 | 29600 | 0.041 |
| 0.4652 | 29700 | 0.0289 |
| 0.4667 | 29800 | 0.0354 |
| 0.4683 | 29900 | 0.0377 |
| 0.4699 | 30000 | 0.0381 |
| 0.4714 | 30100 | 0.0456 |
| 0.4730 | 30200 | 0.0474 |
| 0.4745 | 30300 | 0.0299 |
| 0.4761 | 30400 | 0.0433 |
| 0.4777 | 30500 | 0.0509 |
| 0.4792 | 30600 | 0.0397 |
| 0.4808 | 30700 | 0.0449 |
| 0.4824 | 30800 | 0.0338 |
| 0.4839 | 30900 | 0.0597 |
| 0.4855 | 31000 | 0.0369 |
| 0.4871 | 31100 | 0.0404 |
| 0.4886 | 31200 | 0.0483 |
| 0.4902 | 31300 | 0.0501 |
| 0.4918 | 31400 | 0.0502 |
| 0.4933 | 31500 | 0.046 |
| 0.4949 | 31600 | 0.0461 |
| 0.4965 | 31700 | 0.0365 |
| 0.4980 | 31800 | 0.0394 |
| 0.4996 | 31900 | 0.0348 |
| 0.5012 | 32000 | 0.0309 |
| 0.5027 | 32100 | 0.0312 |
| 0.5043 | 32200 | 0.0318 |
| 0.5059 | 32300 | 0.0349 |
| 0.5074 | 32400 | 0.0351 |
| 0.5090 | 32500 | 0.0392 |
| 0.5106 | 32600 | 0.0478 |
| 0.5121 | 32700 | 0.0374 |
| 0.5137 | 32800 | 0.0396 |
| 0.5153 | 32900 | 0.0346 |
| 0.5168 | 33000 | 0.0357 |
| 0.5184 | 33100 | 0.0428 |
| 0.5200 | 33200 | 0.0348 |
| 0.5215 | 33300 | 0.048 |
| 0.5231 | 33400 | 0.0491 |
| 0.5247 | 33500 | 0.0681 |
| 0.5262 | 33600 | 0.0348 |
| 0.5278 | 33700 | 0.034 |
| 0.5294 | 33800 | 0.0388 |
| 0.5309 | 33900 | 0.0426 |
| 0.5325 | 34000 | 0.0355 |
| 0.5341 | 34100 | 0.0322 |
| 0.5356 | 34200 | 0.047 |
| 0.5372 | 34300 | 0.0416 |
| 0.5388 | 34400 | 0.0267 |
| 0.5403 | 34500 | 0.0415 |
| 0.5419 | 34600 | 0.0377 |
| 0.5435 | 34700 | 0.0426 |
| 0.5450 | 34800 | 0.0399 |
| 0.5466 | 34900 | 0.0456 |
| 0.5482 | 35000 | 0.0458 |
| 0.5497 | 35100 | 0.0337 |
| 0.5513 | 35200 | 0.0448 |
| 0.5529 | 35300 | 0.0437 |
| 0.5544 | 35400 | 0.0468 |
| 0.5560 | 35500 | 0.0347 |
| 0.5576 | 35600 | 0.0406 |
| 0.5591 | 35700 | 0.037 |
| 0.5607 | 35800 | 0.0304 |
| 0.5623 | 35900 | 0.0318 |
| 0.5638 | 36000 | 0.0405 |
| 0.5654 | 36100 | 0.0426 |
| 0.5670 | 36200 | 0.0338 |
| 0.5685 | 36300 | 0.0254 |
| 0.5701 | 36400 | 0.0399 |
| 0.5717 | 36500 | 0.0493 |
| 0.5732 | 36600 | 0.0435 |
| 0.5748 | 36700 | 0.0357 |
| 0.5764 | 36800 | 0.042 |
| 0.5779 | 36900 | 0.0336 |
| 0.5795 | 37000 | 0.0492 |
| 0.5810 | 37100 | 0.0263 |
| 0.5826 | 37200 | 0.0277 |
| 0.5842 | 37300 | 0.0414 |
| 0.5857 | 37400 | 0.0418 |
| 0.5873 | 37500 | 0.0494 |
| 0.5889 | 37600 | 0.0355 |
| 0.5904 | 37700 | 0.0306 |
| 0.5920 | 37800 | 0.045 |
| 0.5936 | 37900 | 0.0304 |
| 0.5951 | 38000 | 0.0305 |
| 0.5967 | 38100 | 0.0485 |
| 0.5983 | 38200 | 0.0513 |
| 0.5998 | 38300 | 0.0362 |
| 0.6014 | 38400 | 0.0255 |
| 0.6030 | 38500 | 0.038 |
| 0.6045 | 38600 | 0.0586 |
| 0.6061 | 38700 | 0.0221 |
| 0.6077 | 38800 | 0.0199 |
| 0.6092 | 38900 | 0.0466 |
| 0.6108 | 39000 | 0.0251 |
| 0.6124 | 39100 | 0.0288 |
| 0.6139 | 39200 | 0.0341 |
| 0.6155 | 39300 | 0.0335 |
| 0.6171 | 39400 | 0.037 |
| 0.6186 | 39500 | 0.0295 |
| 0.6202 | 39600 | 0.0334 |
| 0.6218 | 39700 | 0.0518 |
| 0.6233 | 39800 | 0.0367 |
| 0.6249 | 39900 | 0.044 |
| 0.6265 | 40000 | 0.0431 |
| 0.6280 | 40100 | 0.0496 |
| 0.6296 | 40200 | 0.0425 |
| 0.6312 | 40300 | 0.0449 |
| 0.6327 | 40400 | 0.0337 |
| 0.6343 | 40500 | 0.0273 |
| 0.6359 | 40600 | 0.0359 |
| 0.6374 | 40700 | 0.0283 |
| 0.6390 | 40800 | 0.0317 |
| 0.6406 | 40900 | 0.0297 |
| 0.6421 | 41000 | 0.0302 |
| 0.6437 | 41100 | 0.0309 |
| 0.6453 | 41200 | 0.0327 |
| 0.6468 | 41300 | 0.013 |
| 0.6484 | 41400 | 0.041 |
| 0.6500 | 41500 | 0.0254 |
| 0.6515 | 41600 | 0.0208 |
| 0.6531 | 41700 | 0.0338 |
| 0.6547 | 41800 | 0.0371 |
| 0.6562 | 41900 | 0.0253 |
| 0.6578 | 42000 | 0.0314 |
| 0.6594 | 42100 | 0.0452 |
| 0.6609 | 42200 | 0.0371 |
| 0.6625 | 42300 | 0.0367 |
| 0.6641 | 42400 | 0.052 |
| 0.6656 | 42500 | 0.0267 |
| 0.6672 | 42600 | 0.0353 |
| 0.6688 | 42700 | 0.0385 |
| 0.6703 | 42800 | 0.0361 |
| 0.6719 | 42900 | 0.0342 |
| 0.6735 | 43000 | 0.0311 |
| 0.6750 | 43100 | 0.0587 |
| 0.6766 | 43200 | 0.0393 |
| 0.6782 | 43300 | 0.0325 |
| 0.6797 | 43400 | 0.0356 |
| 0.6813 | 43500 | 0.0428 |
| 0.6829 | 43600 | 0.026 |
| 0.6844 | 43700 | 0.0292 |
| 0.6860 | 43800 | 0.0499 |
| 0.6875 | 43900 | 0.0192 |
| 0.6891 | 44000 | 0.0378 |
| 0.6907 | 44100 | 0.0323 |
| 0.6922 | 44200 | 0.0303 |
| 0.6938 | 44300 | 0.0153 |
| 0.6954 | 44400 | 0.023 |
| 0.6969 | 44500 | 0.0261 |
| 0.6985 | 44600 | 0.0311 |
| 0.7001 | 44700 | 0.029 |
| 0.7016 | 44800 | 0.0247 |
| 0.7032 | 44900 | 0.0353 |
| 0.7048 | 45000 | 0.041 |
| 0.7063 | 45100 | 0.0238 |
| 0.7079 | 45200 | 0.0415 |
| 0.7095 | 45300 | 0.0394 |
| 0.7110 | 45400 | 0.0342 |
| 0.7126 | 45500 | 0.0468 |
| 0.7142 | 45600 | 0.0409 |
| 0.7157 | 45700 | 0.0345 |
| 0.7173 | 45800 | 0.0405 |
| 0.7189 | 45900 | 0.0454 |
| 0.7204 | 46000 | 0.0277 |
| 0.7220 | 46100 | 0.05 |
| 0.7236 | 46200 | 0.0329 |
| 0.7251 | 46300 | 0.0281 |
| 0.7267 | 46400 | 0.0232 |
| 0.7283 | 46500 | 0.0325 |
| 0.7298 | 46600 | 0.0332 |
| 0.7314 | 46700 | 0.0504 |
| 0.7330 | 46800 | 0.0338 |
| 0.7345 | 46900 | 0.0355 |
| 0.7361 | 47000 | 0.0441 |
| 0.7377 | 47100 | 0.0386 |
| 0.7392 | 47200 | 0.0467 |
| 0.7408 | 47300 | 0.0371 |
| 0.7424 | 47400 | 0.0407 |
| 0.7439 | 47500 | 0.0313 |
| 0.7455 | 47600 | 0.0397 |
| 0.7471 | 47700 | 0.0279 |
| 0.7486 | 47800 | 0.04 |
| 0.7502 | 47900 | 0.0318 |
| 0.7518 | 48000 | 0.0337 |
| 0.7533 | 48100 | 0.0483 |
| 0.7549 | 48200 | 0.0356 |
| 0.7565 | 48300 | 0.0368 |
| 0.7580 | 48400 | 0.0322 |
| 0.7596 | 48500 | 0.0228 |
| 0.7612 | 48600 | 0.0275 |
| 0.7627 | 48700 | 0.0361 |
| 0.7643 | 48800 | 0.0257 |
| 0.7659 | 48900 | 0.0277 |
| 0.7674 | 49000 | 0.0448 |
| 0.7690 | 49100 | 0.0369 |
| 0.7706 | 49200 | 0.0224 |
| 0.7721 | 49300 | 0.049 |
| 0.7737 | 49400 | 0.036 |
| 0.7753 | 49500 | 0.0373 |
| 0.7768 | 49600 | 0.0225 |
| 0.7784 | 49700 | 0.0355 |
| 0.7800 | 49800 | 0.0296 |
| 0.7815 | 49900 | 0.0228 |
| 0.7831 | 50000 | 0.0506 |
| 0.7847 | 50100 | 0.0411 |
| 0.7862 | 50200 | 0.0289 |
| 0.7878 | 50300 | 0.0331 |
| 0.7894 | 50400 | 0.0278 |
| 0.7909 | 50500 | 0.0246 |
| 0.7925 | 50600 | 0.0329 |
| 0.7940 | 50700 | 0.0295 |
| 0.7956 | 50800 | 0.0551 |
| 0.7972 | 50900 | 0.0291 |
| 0.7987 | 51000 | 0.0358 |
| 0.8003 | 51100 | 0.0387 |
| 0.8019 | 51200 | 0.0303 |
| 0.8034 | 51300 | 0.0319 |
| 0.8050 | 51400 | 0.0282 |
| 0.8066 | 51500 | 0.0247 |
| 0.8081 | 51600 | 0.0298 |
| 0.8097 | 51700 | 0.0336 |
| 0.8113 | 51800 | 0.0408 |
| 0.8128 | 51900 | 0.04 |
| 0.8144 | 52000 | 0.0425 |
| 0.8160 | 52100 | 0.0326 |
| 0.8175 | 52200 | 0.0308 |
| 0.8191 | 52300 | 0.0307 |
| 0.8207 | 52400 | 0.0226 |
| 0.8222 | 52500 | 0.0325 |
| 0.8238 | 52600 | 0.0449 |
| 0.8254 | 52700 | 0.0437 |
| 0.8269 | 52800 | 0.031 |
| 0.8285 | 52900 | 0.0228 |
| 0.8301 | 53000 | 0.0411 |
| 0.8316 | 53100 | 0.0226 |
| 0.8332 | 53200 | 0.029 |
| 0.8348 | 53300 | 0.033 |
| 0.8363 | 53400 | 0.0325 |
| 0.8379 | 53500 | 0.0382 |
| 0.8395 | 53600 | 0.035 |
| 0.8410 | 53700 | 0.027 |
| 0.8426 | 53800 | 0.0221 |
| 0.8442 | 53900 | 0.0394 |
| 0.8457 | 54000 | 0.03 |
| 0.8473 | 54100 | 0.0406 |
| 0.8489 | 54200 | 0.0257 |
| 0.8504 | 54300 | 0.0322 |
| 0.8520 | 54400 | 0.0312 |
| 0.8536 | 54500 | 0.0338 |
| 0.8551 | 54600 | 0.0522 |
| 0.8567 | 54700 | 0.023 |
| 0.8583 | 54800 | 0.0353 |
| 0.8598 | 54900 | 0.0381 |
| 0.8614 | 55000 | 0.0318 |
| 0.8630 | 55100 | 0.0402 |
| 0.8645 | 55200 | 0.0314 |
| 0.8661 | 55300 | 0.0358 |
| 0.8677 | 55400 | 0.0201 |
| 0.8692 | 55500 | 0.0348 |
| 0.8708 | 55600 | 0.0256 |
| 0.8724 | 55700 | 0.0289 |
| 0.8739 | 55800 | 0.0541 |
| 0.8755 | 55900 | 0.0337 |
| 0.8771 | 56000 | 0.0239 |
| 0.8786 | 56100 | 0.0255 |
| 0.8802 | 56200 | 0.0204 |
| 0.8818 | 56300 | 0.0321 |
| 0.8833 | 56400 | 0.0241 |
| 0.8849 | 56500 | 0.022 |
| 0.8865 | 56600 | 0.0325 |
| 0.8880 | 56700 | 0.03 |
| 0.8896 | 56800 | 0.0365 |
| 0.8912 | 56900 | 0.0341 |
| 0.8927 | 57000 | 0.028 |
| 0.8943 | 57100 | 0.0271 |
| 0.8958 | 57200 | 0.0256 |
| 0.8974 | 57300 | 0.0305 |
| 0.8990 | 57400 | 0.0292 |
| 0.9005 | 57500 | 0.0496 |
| 0.9021 | 57600 | 0.0236 |
| 0.9037 | 57700 | 0.0245 |
| 0.9052 | 57800 | 0.0388 |
| 0.9068 | 57900 | 0.0296 |
| 0.9084 | 58000 | 0.046 |
| 0.9099 | 58100 | 0.0301 |
| 0.9115 | 58200 | 0.0441 |
| 0.9131 | 58300 | 0.0244 |
| 0.9146 | 58400 | 0.0355 |
| 0.9162 | 58500 | 0.0343 |
| 0.9178 | 58600 | 0.0377 |
| 0.9193 | 58700 | 0.0256 |
| 0.9209 | 58800 | 0.0378 |
| 0.9225 | 58900 | 0.03 |
| 0.9240 | 59000 | 0.0296 |
| 0.9256 | 59100 | 0.0214 |
| 0.9272 | 59200 | 0.0257 |
| 0.9287 | 59300 | 0.0366 |
| 0.9303 | 59400 | 0.0435 |
| 0.9319 | 59500 | 0.0399 |
| 0.9334 | 59600 | 0.0302 |
| 0.9350 | 59700 | 0.033 |
| 0.9366 | 59800 | 0.0391 |
| 0.9381 | 59900 | 0.0228 |
| 0.9397 | 60000 | 0.0354 |
| 0.9413 | 60100 | 0.0276 |
| 0.9428 | 60200 | 0.0332 |
| 0.9444 | 60300 | 0.0219 |
| 0.9460 | 60400 | 0.0249 |
| 0.9475 | 60500 | 0.0327 |
| 0.9491 | 60600 | 0.0296 |
| 0.9507 | 60700 | 0.0357 |
| 0.9522 | 60800 | 0.0268 |
| 0.9538 | 60900 | 0.0371 |
| 0.9554 | 61000 | 0.0376 |
| 0.9569 | 61100 | 0.0308 |
| 0.9585 | 61200 | 0.0342 |
| 0.9601 | 61300 | 0.0222 |
| 0.9616 | 61400 | 0.0279 |
| 0.9632 | 61500 | 0.0351 |
| 0.9648 | 61600 | 0.0405 |
| 0.9663 | 61700 | 0.0315 |
| 0.9679 | 61800 | 0.0354 |
| 0.9695 | 61900 | 0.0203 |
| 0.9710 | 62000 | 0.0295 |
| 0.9726 | 62100 | 0.0338 |
| 0.9742 | 62200 | 0.0341 |
| 0.9757 | 62300 | 0.0315 |
| 0.9773 | 62400 | 0.0221 |
| 0.9789 | 62500 | 0.0288 |
| 0.9804 | 62600 | 0.0249 |
| 0.9820 | 62700 | 0.0332 |
| 0.9836 | 62800 | 0.0289 |
| 0.9851 | 62900 | 0.0416 |
| 0.9867 | 63000 | 0.0363 |
| 0.9883 | 63100 | 0.0297 |
| 0.9898 | 63200 | 0.0253 |
| 0.9914 | 63300 | 0.0268 |
| 0.9930 | 63400 | 0.0318 |
| 0.9945 | 63500 | 0.0409 |
| 0.9961 | 63600 | 0.0248 |
| 0.9977 | 63700 | 0.0262 |
| 0.9992 | 63800 | 0.0294 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -