b1bc5c61b4f9caa1b61363f03394f260
This model is a fine-tuned version of albert/albert-base-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.5374
- Data Size: 1.0
- Epoch Runtime: 7.6692
- Mse: 0.5376
- Mae: 0.5436
- R2: 0.7595
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 |
|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 7.1984 | 0 | 1.1631 | 7.1996 | 2.2495 | -2.2207 |
| No log | 1 | 179 | 3.0938 | 0.0078 | 1.4544 | 3.0947 | 1.4763 | -0.3844 |
| No log | 2 | 358 | 2.4564 | 0.0156 | 1.3761 | 2.4571 | 1.3294 | -0.0992 |
| No log | 3 | 537 | 2.2086 | 0.0312 | 1.5215 | 2.2094 | 1.2730 | 0.0116 |
| No log | 4 | 716 | 2.2357 | 0.0625 | 1.7500 | 2.2364 | 1.2390 | -0.0004 |
| No log | 5 | 895 | 0.9630 | 0.125 | 2.0595 | 0.9634 | 0.8163 | 0.5690 |
| 0.1082 | 6 | 1074 | 0.7248 | 0.25 | 2.9344 | 0.7250 | 0.6653 | 0.6757 |
| 1.7546 | 7 | 1253 | 0.6635 | 0.5 | 4.4977 | 0.6637 | 0.6366 | 0.7031 |
| 0.5454 | 8.0 | 1432 | 0.6060 | 1.0 | 7.7242 | 0.6063 | 0.6149 | 0.7288 |
| 0.4078 | 9.0 | 1611 | 0.5375 | 1.0 | 7.6844 | 0.5378 | 0.5597 | 0.7594 |
| 0.3 | 10.0 | 1790 | 0.5301 | 1.0 | 7.6488 | 0.5305 | 0.5630 | 0.7627 |
| 0.2412 | 11.0 | 1969 | 0.6130 | 1.0 | 7.6626 | 0.6131 | 0.5868 | 0.7257 |
| 0.223 | 12.0 | 2148 | 0.6040 | 1.0 | 7.5864 | 0.6045 | 0.5918 | 0.7296 |
| 0.1701 | 13.0 | 2327 | 0.5380 | 1.0 | 7.6107 | 0.5381 | 0.5461 | 0.7593 |
| 0.1444 | 14.0 | 2506 | 0.5374 | 1.0 | 7.6692 | 0.5376 | 0.5436 | 0.7595 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for contemmcm/b1bc5c61b4f9caa1b61363f03394f260
Base model
albert/albert-base-v2