forget_data_2000_0-8epochs
This model is a fine-tuned version of Qwen/Qwen2.5-Math-1.5B on the forget_data_2000_0-8epochs dataset. It achieves the following results on the evaluation set:
- Loss: 0.2479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.2528 | 0.3436 | 100 | 0.2540 |
| 0.2205 | 0.6873 | 200 | 0.2481 |
| 0.2134 | 1.0309 | 300 | 0.2476 |
| 0.2109 | 1.3746 | 400 | 0.2480 |
| 0.2385 | 1.7182 | 500 | 0.2479 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 1