Datasets:
Upload 2 files
Browse files- copious.py +100 -0
- run_test.py +45 -0
copious.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Convert Brat format annotations to JSONL format for NER training.
|
| 3 |
+
|
| 4 |
+
Author: Amir Safari
|
| 5 |
+
Date: 17.10.2025
|
| 6 |
+
|
| 7 |
+
This script processes Brat annotation files (.ann and .txt) from train/dev/test
|
| 8 |
+
directories and converts them into JSONL format suitable for NER model training.
|
| 9 |
+
"""
|
| 10 |
+
import json
|
| 11 |
+
import re
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
print("Starting data conversion from Brat format to JSON Lines...")
|
| 15 |
+
|
| 16 |
+
# Tag mapping: Create a dictionary to convert tag names to integer IDs
|
| 17 |
+
NER_TAGS = [
|
| 18 |
+
"O", "B-Taxon", "I-Taxon", "B-Geographical_Location", "I-Geographical_Location",
|
| 19 |
+
"B-Habitat", "I-Habitat", "B-Temporal_Expression", "I-Temporal_Expression",
|
| 20 |
+
"B-Person", "I-Person",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# Create a mapping from tag name to integer ID
|
| 24 |
+
tag2id = {tag: i for i, tag in enumerate(NER_TAGS)}
|
| 25 |
+
|
| 26 |
+
# Process each split directory (train, dev, test)
|
| 27 |
+
for split in ["train", "dev", "test"]:
|
| 28 |
+
print(f"\nProcessing '{split}' split...")
|
| 29 |
+
input_dir = Path(split)
|
| 30 |
+
output_file = f"{split}.jsonl"
|
| 31 |
+
|
| 32 |
+
if not input_dir.exists():
|
| 33 |
+
# Skip if directory doesn't exist
|
| 34 |
+
print(f"Directory not found: {input_dir}. Skipping split.")
|
| 35 |
+
continue
|
| 36 |
+
|
| 37 |
+
with open(output_file, "w", encoding="utf-8") as outfile:
|
| 38 |
+
# Find all .ann files and process them with their corresponding .txt files
|
| 39 |
+
ann_files = sorted(input_dir.glob("*.ann"))
|
| 40 |
+
for ann_file in ann_files:
|
| 41 |
+
txt_file = ann_file.with_suffix(".txt")
|
| 42 |
+
if not txt_file.exists():
|
| 43 |
+
continue
|
| 44 |
+
|
| 45 |
+
with open(txt_file, "r", encoding="utf-8") as f:
|
| 46 |
+
# Tokenize the text by finding all non-whitespace sequences
|
| 47 |
+
text = f.read()
|
| 48 |
+
|
| 49 |
+
tokens_with_spans = [{"text": match.group(0), "start": match.start(), "end": match.end()} for match in
|
| 50 |
+
re.finditer(r'\S+', text)]
|
| 51 |
+
if not tokens_with_spans:
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
tokens = [t["text"] for t in tokens_with_spans]
|
| 55 |
+
ner_tags = ["O"] * len(tokens)
|
| 56 |
+
# Parse the .ann file to extract entity annotations
|
| 57 |
+
with open(ann_file, "r", encoding="utf-8") as f:
|
| 58 |
+
annotations = []
|
| 59 |
+
# Apply BIO tagging scheme to tokens based on character span overlaps
|
| 60 |
+
for line in f:
|
| 61 |
+
if not line.startswith("T"): continue
|
| 62 |
+
parts = line.strip().split("\t")
|
| 63 |
+
if len(parts) < 2: continue
|
| 64 |
+
tag_info = parts[1]
|
| 65 |
+
tag_parts = tag_info.split(" ")
|
| 66 |
+
label = tag_parts[0].replace(" ", "_")
|
| 67 |
+
spans_str = " ".join(tag_parts[1:])
|
| 68 |
+
char_spans = []
|
| 69 |
+
|
| 70 |
+
for span_part in spans_str.split(';'):
|
| 71 |
+
try:
|
| 72 |
+
start, end = map(int, span_part.split(' '))
|
| 73 |
+
char_spans.append((start, end))
|
| 74 |
+
except ValueError:
|
| 75 |
+
continue
|
| 76 |
+
if char_spans:
|
| 77 |
+
annotations.append({"label": label, "spans": char_spans})
|
| 78 |
+
|
| 79 |
+
for ann in annotations:
|
| 80 |
+
is_first_token = True
|
| 81 |
+
for start_char, end_char in ann["spans"]:
|
| 82 |
+
for i, token in enumerate(tokens_with_spans):
|
| 83 |
+
if token["start"] < end_char and token["end"] > start_char:
|
| 84 |
+
ner_tags[i] = f"B-{ann['label']}" if is_first_token else f"I-{ann['label']}"
|
| 85 |
+
is_first_token = False
|
| 86 |
+
|
| 87 |
+
# Convert tag strings to integer IDs for model compatibility
|
| 88 |
+
ner_tag_ids = [tag2id.get(tag, tag2id["O"]) for tag in ner_tags]
|
| 89 |
+
|
| 90 |
+
# Write the processed example as a single JSON line
|
| 91 |
+
json_line = json.dumps({
|
| 92 |
+
"id": txt_file.stem,
|
| 93 |
+
"tokens": tokens,
|
| 94 |
+
"ner_tags": ner_tag_ids
|
| 95 |
+
})
|
| 96 |
+
outfile.write(json_line + "\n")
|
| 97 |
+
|
| 98 |
+
print(f"Successfully created {output_file}")
|
| 99 |
+
|
| 100 |
+
print("\nConversion complete! ✨")
|
run_test.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test script to load and verify the converted JSONL dataset.
|
| 3 |
+
|
| 4 |
+
Author: Amir Safari
|
| 5 |
+
Date: 17.10.2025
|
| 6 |
+
|
| 7 |
+
This script loads the converted JSONL files (train.jsonl, dev.jsonl, test.jsonl)
|
| 8 |
+
and verifies they can be properly loaded with the HuggingFace datasets library.
|
| 9 |
+
"""
|
| 10 |
+
from datasets import load_dataset, Features, Value, Sequence, ClassLabel
|
| 11 |
+
|
| 12 |
+
print("Attempting to load the converted JSONL dataset...")
|
| 13 |
+
|
| 14 |
+
# Define all possible NER tags for the dataset
|
| 15 |
+
NER_TAGS = [
|
| 16 |
+
"O", "B-Taxon", "I-Taxon", "B-Geographical_Location", "I-Geographical_Location",
|
| 17 |
+
"B-Habitat", "I-Habitat", "B-Temporal_Expression", "I-Temporal_Expression",
|
| 18 |
+
"B-Person", "I-Person",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
# Manually define the features object for robustness
|
| 22 |
+
features = Features({
|
| 23 |
+
'id': Value('string'),
|
| 24 |
+
'tokens': Sequence(Value('string')),
|
| 25 |
+
'ner_tags': Sequence(ClassLabel(names=NER_TAGS))
|
| 26 |
+
})
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
# Load the JSON files directly using the manually defined features
|
| 30 |
+
dataset = load_dataset("json", data_files={
|
| 31 |
+
"train": "train.jsonl",
|
| 32 |
+
"validation": "dev.jsonl",
|
| 33 |
+
"test": "test.jsonl"
|
| 34 |
+
}, features=features)
|
| 35 |
+
|
| 36 |
+
print("\n✅ Success! The dataset was loaded correctly.")
|
| 37 |
+
print("Here is the loaded dataset info:")
|
| 38 |
+
print(dataset)
|
| 39 |
+
|
| 40 |
+
print("\nHere's the first training example:")
|
| 41 |
+
print(dataset["train"][0])
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"\n❌ An error occurred: {e}")
|
| 45 |
+
print("Please make sure the 'train.jsonl', 'dev.jsonl', and 'test.jsonl' files exist.")
|