Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
1.02k
1.02k
label
class label
145 classes
00_L_1
00_L_1
00_L_1
00_L_1
00_L_1
10_L_2
10_L_2
10_L_2
10_L_2
10_L_2
20_L_3
20_L_3
20_L_3
20_L_3
20_L_3
30_L_4
30_L_4
30_L_4
30_L_4
30_L_4
40_L_5
40_L_5
40_L_5
40_L_5
40_L_5
50_L_6
50_L_6
50_L_6
50_L_6
50_L_6
60_R_1
60_R_1
60_R_1
60_R_1
60_R_1
70_R_2
70_R_2
70_R_2
70_R_2
70_R_2
80_R_3
80_R_3
80_R_3
80_R_3
80_R_3
90_R_4
90_R_4
90_R_4
90_R_4
90_R_4
100_R_5
100_R_5
100_R_5
100_R_5
100_R_5
110_R_6
110_R_6
110_R_6
110_R_6
110_R_6
120_R_7
120_R_7
120_R_7
120_R_7
120_R_7
130_R_8
130_R_8
130_R_8
130_R_8
130_R_8
1410_L_1
1410_L_1
1410_L_1
1410_L_1
1410_L_1
1510_R_1
1510_R_1
1510_R_1
1510_R_1
1510_R_1
1611_L_1
1611_L_1
1611_L_1
1611_L_1
1611_L_1
1711_R_1
1711_R_1
1711_R_1
1711_R_1
1711_R_1
1812_L_1
1812_L_1
1812_L_1
1812_L_1
1812_L_1
1912_R_1
1912_R_1
1912_R_1
1912_R_1
1912_R_1
End of preview. Expand in Data Studio

Retinal Vessel Segmentation from Holographic Doppler Imaging

This dataset provides paired images and segmentation masks for retinal vessel segmentation from holographic Doppler imaging.
It is designed for research in computational imaging, retinal blood flow analysis, and deep learning-based vessel segmentation.


Dataset Summary

Holographic Doppler imaging enables quantitative blood flow mapping in the retina by analyzing temporal fluctuations in optical interferograms.
This dataset includes power Doppler images (M0) and their corresponding artery and vein segmentation masks, representing the spatial distribution of retinal blood flow observed through laser Doppler holography. Temporal informations derived from the arterial signal, namely the correlation map and the diasys image, are also provided. See the article submitted to ISBI2026 (linked soon) for more details


Data Description

Attribute Description
Imaging modality Holographic Laser Doppler imaging of the retina
Input type Power Doppler intensity images (M0), Correlation map, Diasys image
Target type Artery and Vein masks : binary segmentation masks (vessels vs. background)
Classes 0: Background, 1: Vessel
File format PNG (8-bit grayscale)
Typical image size 1023 Γ— 1023 pixels
Sampling Retinal field of view from high-speed interferometric acquisitions
Preprocessing Temporal SVD filtering, Fresnel reconstruction, power Doppler accumulation

Dataset Structure

dataset/
β”œβ”€β”€ train/
β”‚ β”œβ”€β”€ measure_001/
β”‚ β”‚ β”œβ”€β”€ M0.png
β”‚ β”‚ β”œβ”€β”€ diasys.png
β”‚ β”‚ β”œβ”€β”€ correlation.png
β”‚ β”‚ β”œβ”€β”€ arteryMask.png
β”‚ β”‚ └── veinMask.png
β”‚ └── ...
└── val/

Measures have the following form : id_eye__number, with:

  • id corresponding to a unique patient.
  • eye equals to 'R' or 'L', respectively for right eye or left eye
  • number indicating which measure of the same eye it is
Downloads last month
22