The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
Wikipedia 1M — Embedding Snapshot (Qdrant, 768D, GTE Multilingual Base)
This dataset contains a 7GB Qdrant snapshot with 1,000,000 Polish Wikipedia passages, embedded using:
- Model:
Alibaba-NLP/gte-multilingual-base - Embedding dimension:
768 - Distance metric:
cosine - Index type: HNSW (
M=32,ef_construct=256, on-disk enabled) - Chunking strategy: semantic, max chunk size 512, overlap 128
- Payloads: include passage text + metadata
The snapshot can be restored directly using the Qdrant client.
Because the content originates from Wikipedia, the dataset is distributed under
CC-BY-SA-4.0, in accordance with the original CC-BY-SA-3.0 license.
Dataset Details
Source
The dataset consists of the first 1M processed Wikipedia passages, chunked and embedded via the RAGx pipeline:
- Chunker model:
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 - Chunker strategy: semantic segmentation, section-aware
- Embedding model:
Alibaba-NLP/gte-multilingual-base - Query prefix:
query: - Passage prefix:
passage: - Max seq length: 512
Qdrant Configuration
- Collection name:
ragx_documents_1M_main_sample - Vectors: 1,000,000
- Dimensionality: 768
- Distance: cosine
- Index: HNSW, on-disk enabled
- Search EF: 256
Contents
The snapshot contains:
vectors(1M embeddings)payloads(raw chunk text, document metadata)- Qdrant index structure (HNSW, WAL, snapshot)
Uses
Direct Use
- Retrieval-Augmented Generation (RAG)
- Hybrid retrievers with cross-encoders (e.g., Jina Reranker)
- Multi-hop retrieval
- Semantic search benchmarking
- Qdrant index bootstrapping
- Testing LLM-based chain-of-verification systems (CoVe)
Out-of-Scope Use
- Reconstructing original Wikipedia pages from embeddings
- Tasks requiring full textual content without attribution
Loading the Snapshot
Python
from huggingface_hub import hf_hub_download
from qdrant_client import QdrantClient
path = hf_hub_download(
repo_id="floressek/wiki-1m-qdrant-snapshot",
filename="wiki_1m_qdrant.snapshot",
repo_type="dataset"
)
client = QdrantClient(path=path, storage="snapshot")
Qdrant CLI
qdrant snapshot recover wiki_1m_qdrant.snapshot
Licensing
Wikipedia text is licensed under CC-BY-SA 3.0, and therefore all derivative works — including embeddings — must follow a share-alike license.
This dataset is released under CC-BY-SA 4.0.
Citation
If you use this dataset, please cite:
Wikipedia:
Wikipedia contributors. (2024). Wikipedia, The Free Encyclopedia.
GTE Multilingual Base:
Alibaba-NLP/gte-multilingual-base
Qdrant:
Qdrant: Scalable Vector Search Engine. https://qdrant.tech
Dataset Card Contact
Maintainer: Floressek Questions / issues: open an Issue in this repo.
- Downloads last month
- 13