PathoCell / README.md
FabianReith's picture
Update README.md
1f5c632 verified
---
license: mit
tags:
- pathology
- histology
- cell-phenotyping
- foundation-models
- benchmark
pretty_name: "PathoCell Benchmark Datasets"
---
# PathoCell: A Benchmark for Foundational Models in Computational Pathology
This repository contains the datasets for **PathoCellBench** (formerly PhenoBench), a comprehensive benchmark designed to evaluate the cell phenotyping capabilities of pathology Foundation Models.
The benchmark suite includes four key datasets, all processed into the efficient LMDB (Lightning Memory-Mapped Database) format to facilitate large-scale experimentation.
## Datasets Included
This collection consolidates the following datasets:
* **[PathoCell](https://huggingface.co/datasets/FabianReith/phenobench/tree/main/data/phenocell)** (formerly PhenoCell): Our new, challenging benchmark dataset for H&E cell phenotyping with 14 granular cell types.
* **[PanNuke](https://huggingface.co/datasets/FabianReith/phenobench/tree/main/data/pannuke)**: A pan-cancer nucleus segmentation and classification dataset. **Note: This dataset requires a one-time setup step after downloading (see instructions below).**
* **[Lizard](https://huggingface.co/datasets/FabianReith/phenobench/tree/main/data/lizard)**: A large-scale nucleus segmentation and classification dataset in colon histology.
* **[ARCTIQUE](https://huggingface.co/datasets/FabianReith/phenobench/tree/main/data/arctique)**: A colorectal cancer histology dataset for tile-based classification.
---
## **IMPORTANT**: Setup Instructions for the PanNuke Dataset
Due to repository file size limits, the large database file for the **PanNuke dataset** (`data.mdb`) was split into smaller parts. Before you can use this dataset, you must reassemble these parts into a single file.
After downloading the repository, navigate into the PanNuke `lmdb` directory and run the `cat` command as shown below.
# 1. Navigate to the correct directory
cd data/pannuke/pannuke_lmdb/
# 2. Run the cat command to merge the parts into a single file
cat data.mdb.part_* > data.mdb
# 3. Verify the new file 'data.mdb' has been created.
# You can now optionally delete the .part files to save space.
# rm data.mdb.part_*
The other datasets (`PathoCell`, `Lizard`, and `ARCTIQUE`) are ready to use immediately after download and do not require this step.
---
## How to Use
You can download the entire dataset collection using the Hugging Face `datasets` library.
from datasets import load_dataset
# Download all the dataset files
# Note: This does not load the LMDB files into memory, it only downloads the raw files.
# Remember to run the reassembly command for PanNuke after downloading.
dataset_path = load_dataset("FabianReith/phenobench", cache_dir="./huggingface_data")
print(f"Dataset downloaded to: {dataset_path.cache_files}")
After reassembly, you can use your own custom data loader to read from the resulting `.mdb` files.
## Dataset Structure
The data is organized into folders, one for each of the four datasets.
````
/
β”œβ”€β”€ data/
β”‚ β”œβ”€β”€ arctique/
β”‚ β”‚ β”œβ”€β”€ arctique_lmdb/
β”‚ β”‚ β”‚ β”œβ”€β”€ data.mdb
β”‚ β”‚ β”‚ └── lock.mdb
β”‚ β”‚ └── ... (other metadata files)
β”‚ β”‚
β”‚ β”œβ”€β”€ lizard/
β”‚ β”‚ β”œβ”€β”€ lizard_lmdb/
β”‚ β”‚ β”‚ β”œβ”€β”€ data.mdb
β”‚ β”‚ β”‚ └── lock.mdb
β”‚ β”‚ └── ...
β”‚ β”‚
β”‚ β”œβ”€β”€ pannuke/
β”‚ β”‚ β”œβ”€β”€ pannuke_lmdb/ (Requires reassembly)
β”‚ β”‚ β”‚ β”œβ”€β”€ data.mdb.part_aa
β”‚ β”‚ β”‚ β”œβ”€β”€ data.mdb.part_ab
β”‚ β”‚ β”‚ └── ...
β”‚ β”‚ └── ...
β”‚ β”‚
β”‚ └── phenocell/ (PathoCell legacy name)
β”‚ β”œβ”€β”€ phenocell/
β”‚ β”‚ β”œβ”€β”€ data.mdb
β”‚ β”‚ └── lock.mdb
β”‚ └── ...
β”‚
β”œβ”€β”€ pathocell_hdf/
β”‚ └── ... (contains the PathoCell dataset in HDF5 format)
β”‚
β”œβ”€β”€ .gitattributes
└── README.md
````
## Citation Information
If you use our benchmark or the **PathoCell** dataset in your research, please cite our work.
*TODO*
Please also ensure you cite the original papers for the **PanNuke**, **Lizard**, and **ARCTIQUE** datasets if you use them.
## License
This dataset collection is licensed under the **MIT License**.