KC-MMbench / README.md
Kwai-Keye's picture
Enhance dataset card: Add comprehensive metadata and usage examples for KC-MMBench (#2)
d2351d4 verified
---
language:
- zh
- en
license: cc-by-sa-4.0
task_categories:
- video-text-to-text
tags:
- multimodal
- video-understanding
- short-video
- benchmark
- e-commerce
- vqa
library_name:
- transformers
---
<font size=3><div align='center' > [[๐ŸŽ Home Page](https://kwai-keye.github.io/)] [[๐Ÿ“– Technical Report](https://huggingface.co/papers/2507.01949)] [[\ud83d\udcca Models](https://huggingface.co/Kwai-Keye)] [[\ud83d\ude80 Demo](https://huggingface.co/spaces/Kwai-Keye/Keye-VL-8B-Preview)] </div></font>
This repository contains **KC-MMBench**, a new benchmark dataset meticulously tailored for real-world short-video scenarios, as presented in the paper "[Kwai Keye-VL Technical Report](https://huggingface.co/papers/2507.01949)". Constructed from [Kuaishou](https://www.kuaishou.com/) short video data, KC-MMBench comprises 6 distinct datasets designed to evaluate the performance of Vision-Language Models (VLMs) like [**Kwai Keye-VL-8B**](https://huggingface.co/Kwai-Keye/Keye-VL-8B-Preview), Qwen2.5-VL, and InternVL in comprehending dynamic, information-dense short-form videos.
For the associated code, detailed documentation, and evaluation scripts, please refer to the official [Kwai Keye-VL GitHub repository](https://github.com/Kwai-Keye/Kwai-Keye-VL).
If you want to use KC-MMbench, please download with:
```bash
git clone https://huggingface.co/datasets/Kwai-Keye/KC-MMbench
```
## Tasks
| Task | Description |
| -------------- | --------------------------------------------------------------------------- |
| CPV | The task of predicting product attributes in e-commerce. |
| Hot_Videos_Aggregation | The task of determining whether multiple videos belong to the same topic. |
| Collection_Order | The task of determining the logical order between multiple videos with the same topic. |
| Pornographic_Comment | The task of whether short video comments contain pornographic content. |
| High_Like | A binary classification task to determine the rate of likes of a short video. |
| SPU | The task of determining whether two items are the same product in e-commerce. |
## Performance
| Task | Qwen2.5-VL-3B | Qwen2.5-VL-7B | InternVL-3-8B | MiMo-VL-7B | Kwai Keye-VL-8B |
| -------------- | ------------- | ------------- | ------------- | ------- | ---- |
| CPV | 12.39 | 20.08 | 14.95 | 16.66 | 55.13 |
| Hot_Videos_Aggregation | 42.38 | 46.35 | 52.31 | 49.00 | 54.30 |
| Collection_Order | 36.88 | 59.83 | 64.75 | 78.68 | 84.43 |
| Pornographic_Comment | 56.61 | 56.08 | 57.14 | 68.25 | 71.96 |
| High_Like | 48.85 | 47.94 | 47.03 | 51.14 | 55.25 |
| SPU | 74.09 | 81.34 | 75.64 | 81.86 | 87.05 |
## Usage
This section provides a quick guide on how to interact with models using the `keye-vl-utils` library, which is essential for processing and integrating visual language information with Keye Series Models like Kwai Keye-VL-8B.
### Install `keye-vl-utils`
First, install the necessary utility library:
```bash
pip install keye-vl-utils
```
### Keye-VL Inference Example
Here's an example of performing inference with a Kwai Keye-VL model, demonstrating how to prepare inputs for both image and video scenarios.
```python
from transformers import AutoModel, AutoProcessor
from keye_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model_path = "Kwai-Keye/Keye-VL-8B-Preview"
model = AutoModel.from_pretrained(
model_path, torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", trust_remote_code=True,
).to('cuda')
# Example messages demonstrating various input types (image, video)
messages = [
# Image Input Examples
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
[{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
[{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
# Video Input Examples (most relevant for KC-MMBench)
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
[{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]
processor = AutoProcessor.from_pretrained(model_path)
# Note: model loaded above already
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt", **video_kwargs).to("cuda")
generated_ids = model.generate(**inputs)
print(generated_ids)
```
### Evaluation
For detailed instructions on how to evaluate models using the KC-MMBench datasets, including setup and running evaluation scripts, please refer to the `evaluation/KC-MMBench/README.md` file in the official [Kwai Keye-VL GitHub repository](https://github.com/Kwai-Keye/Kwai-Keye-VL/tree/main/evaluation/KC-MMBench).
Below is the example configuration for evaluation using VLMs on our datasets:
```python
{
"model": "...", # Specify your model
"data": {
"CPV": {
"class": "KwaiVQADataset",
"dataset": "CPV"
},
"Hot_Videos_Aggregation": {
"class": "KwaiVQADataset",
"dataset": "Hot_Videos_Aggregation"
},
"Collection_Order": {
"class": "KwaiVQADataset",
"dataset": "Collection_Order"
},
"Pornographic_Comment": {
"class": "KwaiYORNDataset",
"dataset": "Pornographic_Comment"
},
"High_like":{
"class":"KwaiYORNDataset",
"dataset":"High_like"
},
"SPU": {
"class": "KwaiYORNDataset",
"dataset": "SPU"
}
}
}
```