Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'code'}) and 2 missing columns ({'true_code', 'train_code'}).

This happened while the csv dataset builder was generating data using

hf://datasets/Vedant-acharya/AQ_finetuning_data/AQ_test_dataset.csv (at revision 5501ab5bc2223cd3829ed62ba18d584d75f6c46b)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              id: int64
              category: string
              og_question: string
              code: string
              question: string
              correct_ans: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1064
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), 'id': Value(dtype='int64', id=None), 'category': Value(dtype='string', id=None), 'og_question': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'true_code': Value(dtype='string', id=None), 'correct_ans': Value(dtype='string', id=None), 'train_code': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'code'}) and 2 missing columns ({'true_code', 'train_code'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/Vedant-acharya/AQ_finetuning_data/AQ_test_dataset.csv (at revision 5501ab5bc2223cd3829ed62ba18d584d75f6c46b)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
id
int64
category
string
og_question
string
question
string
true_code
string
correct_ans
string
train_code
string
0
1
area_based
Which state (excluding UTs) has the 3rd highest PM 10 concentration per square kilometer based on the median PM 10 values?
Which state (excluding Union Territories) shows the 3rd maximum PM10 concentration per square kilometer, using median PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Sikkim
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[2]['state'] return max_area_state </code>
1
4
area_based
Which state (excluding UTs) has the highest PM 2.5 concentration per square kilometer based on the variance of PM 2.5 values?
Which state (excluding Union Territories) has the highest PM2.5 concentration per square kilometer, based on the variance of PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Manipur
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[0]['state'] return max_area_state </code>
2
6
area_based
Which state (excluding UTs) has the 3rd highest PM 2.5 concentration per square kilometer based on the average PM 2.5 values?
Which state (excluding Union Territories) exhibits the 3rd maximum PM2.5 concentration per square kilometer, based on average PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].mean().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Sikkim
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].mean().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[2]['state'] return max_area_state </code>
3
10
area_based
Which state (excluding UTs) has the 3rd lowest PM 10 concentration per square kilometer based on the variance of PM 10 values?
Which state (excluding Union Territories) exhibits the 3rd lowest PM10 concentration per square kilometer, based on the variance of PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] print(max_area_state) true_code()
Tamil Nadu
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] return max_area_state </code>
4
16
area_based
Which state (excluding UTs) has the 2nd highest PM 2.5 concentration per square kilometer based on the 75th percentile of PM 2.5 values?
Which state (excluding Union Territories) has the 2nd maximum PM2.5 concentration per square kilometer, based on 75th percentile PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Nagaland
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] return max_area_state </code>
5
23
area_based
Which state (excluding UTs) has the 2nd lowest PM 10 concentration per square kilometer based on the 25th percentile of PM 10 values?
Which state (excluding Union Territories) presents the 2nd minimum PM10 concentration per square kilometer, according to 25th percentile PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] print(max_area_state) true_code()
Madhya Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] return max_area_state </code>
6
26
area_based
Which state (excluding UTs) has the 3rd lowest PM 2.5 concentration per square kilometer based on the 75th percentile of PM 2.5 values?
Which state (excluding Union Territories) exhibits the 3rd lowest PM2.5 concentration per square kilometer, based on 75th percentile PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] print(max_area_state) true_code()
Maharashtra
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] return max_area_state </code>
7
31
area_based
Which state (excluding UTs) has the 2nd highest PM 2.5 concentration per square kilometer based on the median PM 2.5 values?
Which state (excluding Union Territories) presents the 2nd maximum PM2.5 concentration per square kilometer, according to median PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Nagaland
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] return max_area_state </code>
8
34
area_based
Which state (excluding UTs) has the 3rd lowest PM 2.5 concentration per square kilometer based on the variance of PM 2.5 values?
Which state (excluding Union Territories) exhibits the 3rd lowest PM2.5 concentration per square kilometer, based on the variance of PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] print(max_area_state) true_code()
Maharashtra
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].var().reset_index() states_area = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[2]['state'] return max_area_state </code>
9
40
area_based
Which union territory has the lowest PM 2.5 concentration per square kilometer based on the 75th percentile of PM 2.5 values?
Which union territory shows the minimum PM2.5 concentration per square kilometer, using 75th percentile PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[0]['state'] print(max_area_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[0]['state'] return max_area_state </code>
10
43
area_based
Which union territory has the highest PM 2.5 concentration per square kilometer based on the total PM 2.5 values?
Which union territory has the highest PM2.5 concentration per square kilometer, based on total PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].sum().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].sum().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[0]['state'] return max_area_state </code>
11
46
area_based
Which union territory has the 2nd lowest PM 2.5 concentration per square kilometer based on the 75th percentile of PM 2.5 values?
Which union territory presents the 2nd minimum PM2.5 concentration per square kilometer, according to 75th percentile PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] print(max_area_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] return max_area_state </code>
12
47
area_based
Which union territory has the 2nd highest PM 10 concentration per square kilometer based on the total PM 10 values?
Which union territory has the 2nd highest PM10 concentration per square kilometer, based on total PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].sum().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].sum().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2', ascending=False).iloc[1]['state'] return max_area_state </code>
13
56
area_based
Which union territory has the lowest PM 10 concentration per square kilometer based on the 25th percentile of PM 10 values?
Which union territory shows the minimum PM10 concentration per square kilometer, using 25th percentile PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[0]['state'] print(max_area_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[0]['state'] return max_area_state </code>
14
57
area_based
Which union territory has the 2nd lowest PM 2.5 concentration per square kilometer based on the median PM 2.5 values?
Which union territory exhibits the 2nd lowest PM2.5 concentration per square kilometer, based on median PM2.5 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM2.5'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] print(max_area_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM2.5'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM2.5'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] return max_area_state </code>
15
58
area_based
Which union territory has the 2nd lowest PM 10 concentration per square kilometer based on the 25th percentile of PM 10 values?
Which union territory presents the 2nd minimum PM10 concentration per square kilometer, according to 25th percentile PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] print(max_area_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].quantile(0.25).reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] return max_area_state </code>
16
64
area_based
Which union territory has the 2nd lowest PM 10 concentration per square kilometer based on the median PM 10 values?
Which union territory shows the 2nd minimum PM10 concentration per square kilometer, using median PM10 values?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm25 = main_data.groupby('state')['PM10'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] print(max_area_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm25 = data.groupby('state')['PM10'].median().reset_index() states_area = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm25.merge(states_area, on='state', how='inner') merged_df['pm_per_km2'] = merged_df['PM10'] / merged_df['area (km2)'] max_area_state = merged_df.sort_values('pm_per_km2').iloc[1]['state'] return max_area_state </code>
17
73
area_based
Which state has the lowest number of monitoring stations relative to its area?
Which state possesses the smallest number of monitoring stations relative to its area?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") station_counts = main_data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2').iloc[0]['state'] print(required_state) true_code()
Arunachal Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): station_counts = data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2').iloc[0]['state'] return required_state </code>
18
74
area_based
Which state has the 4th highest number of monitoring stations relative to its area?
Which state has the 4th highest count of monitoring stations in proportion to its area?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") station_counts = main_data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2', ascending=False).iloc[3]['state'] print(required_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): station_counts = data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2', ascending=False).iloc[3]['state'] return required_state </code>
19
77
area_based
Which union territory has the lowest number of monitoring stations relative to its area?
Which union territory possesses the smallest number of monitoring stations relative to its area?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") station_counts = main_data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2').iloc[0]['state'] print(required_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): station_counts = data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2').iloc[0]['state'] return required_state </code>
20
78
area_based
Which union territory has the 4th highest number of monitoring stations relative to its area?
Which union territory has the 4th highest count of monitoring stations in proportion to its area?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") station_counts = main_data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2', ascending=False).iloc[3]['state'] print(required_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): station_counts = data.groupby('state')['station'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = station_counts.merge(filtered_states_data, on='state', how='inner') merged_df['stations_per_km2'] = merged_df['station'] / merged_df['area (km2)'] required_state = merged_df.sort_values('stations_per_km2', ascending=False).iloc[3]['state'] return required_state </code>
21
79
area_based
Report the total land area of the state (excluding UTs) with the highest combined PM2.5 and PM10 concentrations.
Provide the total land area of the state (excluding Union Territories) having the maximum combined PM2.5 and PM10 concentrations.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_averages = main_data.groupby('state')[['PM2.5', 'PM10']].mean() state_averages['combined'] = state_averages['PM2.5'] + state_averages['PM10'] filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_averages.merge(filtered_states_data, on='state', how='inner') required_area = merged_df.sort_values('combined', ascending=False).iloc[0]['area (km2)'] print(required_area) true_code()
94163
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_averages = data.groupby('state')[['PM2.5', 'PM10']].mean() state_averages['combined'] = state_averages['PM2.5'] + state_averages['PM10'] filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_averages.merge(filtered_states_data, on='state', how='inner') required_area = merged_df.sort_values('combined', ascending=False).iloc[0]['area (km2)'] return required_area </code>
22
83
area_based
Report the total land area of the union territory with the highest combined PM2.5 and PM10 concentrations.
State the total land area of the union territory with the highest combined PM2.5 and PM10 concentrations.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_averages = main_data.groupby('state')[['PM2.5', 'PM10']].mean() state_averages['combined'] = state_averages['PM2.5'] + state_averages['PM10'] filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_averages.merge(filtered_states_data, on='state', how='inner') required_area = merged_df.sort_values('combined', ascending=False).iloc[0]['area (km2)'] print(required_area) true_code()
1484
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_averages = data.groupby('state')[['PM2.5', 'PM10']].mean() state_averages['combined'] = state_averages['PM2.5'] + state_averages['PM10'] filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_averages.merge(filtered_states_data, on='state', how='inner') required_area = merged_df.sort_values('combined', ascending=False).iloc[0]['area (km2)'] return required_area </code>
23
91
area_based
Which state(excuding UTs) has the 2nd lowest land area among the top 10 most polluted states, based on median PM 10 levels?
Which state (excluding Union Territories) has the 2nd minimum land area among the top 10 most polluted states, according to median PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Punjab
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
24
94
area_based
Which state(excuding UTs) has the 3rd highest land area among the top 5 most polluted states, based on 25th percentile of PM 10 levels?
Which state (excluding Union Territories) possesses the 3rd largest land area among the top 5 most polluted states, based on the 25th percentile of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Jharkhand
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] return max_area_state </code>
25
95
area_based
Which state(excuding UTs) has the lowest land area among the top 3 most polluted states, based on variance of PM 10 levels?
Which state (excluding Union Territories) has the smallest land area among the top 3 most polluted states, according to the variance of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Assam
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
26
102
area_based
Which state(excuding UTs) has the 2nd highest land area among the top 5 most polluted states, based on variance of PM 2.5 levels?
Which state (excluding Union Territories) possesses the 2nd largest land area among the top 5 most polluted states, based on the variance of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Bihar
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] return max_area_state </code>
27
109
area_based
Which state(excuding UTs) has the 2nd lowest land area among the top 10 most polluted states, based on total PM 10 levels?
Which state (excluding Union Territories) has the 2nd minimum land area among the top 10 most polluted states, according to total PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Punjab
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
28
110
area_based
Which state(excuding UTs) has the 2nd lowest land area among the top 10 most polluted states, based on 75th percentile of PM 2.5 levels?
Which state (excluding Union Territories) possesses the 2nd smallest land area among the top 10 most polluted states, based on the 75th percentile of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
29
115
area_based
Which state(excuding UTs) has the lowest land area among the top 3 most polluted states, based on 25th percentile of PM 2.5 levels?
Which state (excluding Union Territories) has the smallest land area among the top 3 most polluted states, according to the 25th percentile of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
30
120
area_based
Which state(excuding UTs) has the highest land area among the top 10 most polluted states, based on 75th percentile of PM 2.5 levels?
Which state (excluding Union Territories) possesses the largest land area among the top 10 most polluted states, based on the 75th percentile of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Rajasthan
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
31
125
area_based
Which state(excuding UTs) has the 3rd lowest land area among the top 10 most polluted states, based on variance of PM 10 levels?
Which state (excluding Union Territories) has the 3rd minimum land area among the top 10 most polluted states, according to the variance of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[2]['state'] print(max_area_state) true_code()
Assam
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[2]['state'] return max_area_state </code>
32
127
area_based
Which state(excuding UTs) has the highest land area among the top 5 most polluted states, based on 25th percentile of PM 10 levels?
Which state (excluding Union Territories) has the largest land area among the top 5 most polluted states, according to the 25th percentile of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Rajasthan
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
33
133
area_based
Which state(excuding UTs) has the lowest land area among the top 5 most polluted states, based on median PM 2.5 levels?
Which state (excluding Union Territories) has the smallest land area among the top 5 most polluted states, according to median PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(5)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
34
138
area_based
Which state(excuding UTs) has the 2nd highest land area among the top 3 most polluted states, based on 25th percentile of PM 2.5 levels?
Which state (excluding Union Territories) possesses the 2nd largest land area among the top 3 most polluted states, based on the 25th percentile of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Himachal Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] return max_area_state </code>
35
146
area_based
Which state(excuding UTs) has the 3rd highest land area among the top 10 most polluted states, based on 25th percentile of PM 10 levels?
Which state (excluding Union Territories) possesses the 3rd largest land area among the top 10 most polluted states, based on the 25th percentile of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Uttar Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] return max_area_state </code>
36
153
area_based
Which state(excuding UTs) has the 3rd highest land area among the top 10 most polluted states, based on average PM 2.5 levels?
Which state (excluding Union Territories) has the 3rd highest land area among the top 10 most polluted states, according to average PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Gujarat
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] return max_area_state </code>
37
154
area_based
Which state(excuding UTs) has the 3rd lowest land area among the top 10 most polluted states, based on median PM 2.5 levels?
Which state (excluding Union Territories) possesses the 3rd smallest land area among the top 10 most polluted states, based on median PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[2]['state'] print(max_area_state) true_code()
Punjab
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[2]['state'] return max_area_state </code>
38
156
area_based
Which state(excuding UTs) has the highest land area among the top 10 most polluted states, based on median PM 10 levels?
Which state (excluding Union Territories) possesses the largest land area among the top 10 most polluted states, based on median PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Rajasthan
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
39
177
area_based
Which state(excuding UTs) has the 3rd highest land area among the top 3 most polluted states, based on total PM 10 levels?
Which state (excluding Union Territories) has the 3rd highest land area among the top 3 most polluted states, according to total PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] print(max_area_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(3)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[2]['state'] return max_area_state </code>
40
181
area_based
Which state(excuding UTs) has the lowest land area among the top 10 most polluted states, based on standard deviation of PM 10 levels?
Which state (excluding Union Territories) has the minimum land area among the top 10 most polluted states, according to the standard deviation of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Tripura
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(10)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
41
194
area_based
Which union territory has the highest land area among the top 4 most polluted union territories, based on average PM 2.5 levels?
Which union territory possesses the highest land area among the top 4 most polluted union territories, based on average PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
42
195
area_based
Which union territory has the 2nd lowest land area among the top 2 most polluted union territories, based on 75th percentile of PM 10 levels?
Which union territory has the 2nd minimum land area among the top 2 most polluted union territories, according to the 75th percentile of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
43
196
area_based
Which union territory has the lowest land area among the top 4 most polluted union territories, based on 75th percentile of PM 2.5 levels?
Which union territory possesses the smallest land area among the top 4 most polluted union territories, based on the 75th percentile of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
44
209
area_based
Which union territory has the 2nd highest land area among the top 2 most polluted union territories, based on standard deviation of PM 10 levels?
Which union territory has the 2nd highest land area among the top 2 most polluted union territories, according to the standard deviation of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] return max_area_state </code>
45
219
area_based
Which union territory has the 2nd lowest land area among the top 4 most polluted union territories, based on standard deviation of PM 10 levels?
Which union territory has the 2nd minimum land area among the top 4 most polluted union territories, according to the standard deviation of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].std().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
46
220
area_based
Which union territory has the lowest land area among the top 4 most polluted union territories, based on average PM 10 levels?
Which union territory possesses the smallest land area among the top 4 most polluted union territories, based on average PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].mean().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
47
221
area_based
Which union territory has the highest land area among the top 2 most polluted union territories, based on median PM 2.5 levels?
Which union territory has the largest land area among the top 2 most polluted union territories, according to median PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
48
226
area_based
Which union territory has the 2nd lowest land area among the top 2 most polluted union territories, based on variance of PM 2.5 levels?
Which union territory possesses the 2nd smallest land area among the top 2 most polluted union territories, based on the variance of PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[1]['state'] return max_area_state </code>
49
230
area_based
Which union territory has the 2nd highest land area among the top 4 most polluted union territories, based on variance of PM 10 levels?
Which union territory possesses the 2nd largest land area among the top 4 most polluted union territories, based on the variance of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].var().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[1]['state'] return max_area_state </code>
50
232
area_based
Which union territory has the highest land area among the top 2 most polluted union territories, based on 25th percentile of PM 10 levels?
Which union territory possesses the largest land area among the top 2 most polluted union territories, based on the 25th percentile of PM10 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] print(max_area_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM10', ascending=False) top_polluted_states = merged_df.head(2)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)', ascending=False).iloc[0]['state'] return max_area_state </code>
51
234
area_based
Which union territory has the lowest land area among the top 4 most polluted union territories, based on median PM 2.5 levels?
Which union territory possesses the smallest land area among the top 4 most polluted union territories, based on median PM2.5 levels?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm_avg = main_data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] print(max_area_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm_avg = data.groupby('state')['PM2.5'].median().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_df = state_pm_avg.merge(filtered_states_data, on='state', how='inner') merged_df = merged_df.sort_values('PM2.5', ascending=False) top_polluted_states = merged_df.head(4)['state'].tolist() top_states_area = merged_df[merged_df['state'].isin(top_polluted_states)] max_area_state = top_states_area.sort_values('area (km2)').iloc[0]['state'] return max_area_state </code>
52
238
area_based
Which state with a land area lesser than 50,000 km² has the lowest PM 2.5 level, based on 25th percentile of PM 2.5 level?
Which state having a land area less than 50,000 km² registers the minimum PM2.5 level, based on its 25th percentile PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5').iloc[0]['state'] print(required_state) true_code()
Mizoram
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5').iloc[0]['state'] return required_state </code>
53
240
area_based
Which state with a land area lesser than 50,000 km² has the 5th highest PM 10 level, based on variance of PM 10 level?
Which state having a land area less than 50,000 km² registers the 5th maximum PM10 level, based on its variance of PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].var().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[4]['state'] print(required_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].var().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[4]['state'] return required_state </code>
54
250
area_based
Which state with a land area greater than 50,000 km² has the 2nd lowest PM 2.5 level, based on total PM 2.5 level?
Which state having a land area exceeding 50,000 km² registers the 2nd minimum PM2.5 level, based on its total PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].sum().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] print(required_state) true_code()
Himachal Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].sum().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] return required_state </code>
55
251
area_based
Which state with a land area greater than 50,000 km² has the 2nd highest PM 2.5 level, based on standard deviation of PM 2.5 level?
Which state with a land area greater than 50,000 km² shows the 2nd highest PM2.5 level, according to its standard deviation of PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] print(required_state) true_code()
Bihar
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] return required_state </code>
56
256
area_based
Which state with a land area greater than 50,000 km² has the 5th lowest PM 10 level, based on total PM 10 level?
Which state having a land area exceeding 50,000 km² registers the 5th minimum PM10 level, based on its total PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].sum().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10').iloc[4]['state'] print(required_state) true_code()
Chhattisgarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].sum().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10').iloc[4]['state'] return required_state </code>
57
279
area_based
Which state with a land area lesser than 50,000 km² has the lowest PM 10 level, based on median PM 10 level?
Which state with a land area below 50,000 km² shows the minimum PM10 level, according to its median PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].median().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] print(required_state) true_code()
Sikkim
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].median().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] return required_state </code>
58
287
area_based
Which state with a land area lesser than 50,000 km² has the 2nd highest PM 10 level, based on standard deviation of PM 10 level?
Which state with a land area below 50,000 km² shows the 2nd highest PM10 level, according to its standard deviation of PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[1]['state'] print(required_state) true_code()
Haryana
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[1]['state'] return required_state </code>
59
289
area_based
Which state with a land area lesser than 50,000 km² has the lowest PM 2.5 level, based on average PM 2.5 level?
Which state with a land area below 50,000 km² shows the minimum PM2.5 level, according to its average PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5').iloc[0]['state'] print(required_state) true_code()
Mizoram
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5').iloc[0]['state'] return required_state </code>
60
293
area_based
Which state with a land area lesser than 50,000 km² has the 3rd highest PM 2.5 level, based on average PM 2.5 level?
Which state with a land area below 50,000 km² shows the 3rd highest PM2.5 level, according to its average PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[2]['state'] print(required_state) true_code()
Tripura
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[2]['state'] return required_state </code>
61
298
area_based
Which state with a land area lesser than 50,000 km² has the 3rd lowest PM 10 level, based on 75th percentile of PM 10 level?
Which state having a land area less than 50,000 km² registers the 3rd minimum PM10 level, based on its 75th percentile PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].quantile(0.75).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10').iloc[2]['state'] print(required_state) true_code()
Mizoram
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].quantile(0.75).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 50000] required_state = filtered_data.sort_values('PM10').iloc[2]['state'] return required_state </code>
62
306
area_based
Which state with a land area greater than 50,000 km² has the 5th highest PM 10 level, based on standard deviation of PM 10 level?
Which state having a land area exceeding 50,000 km² registers the 5th maximum PM10 level, based on its standard deviation of PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[4]['state'] print(required_state) true_code()
West Bengal
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[4]['state'] return required_state </code>
63
311
area_based
Which state with a land area greater than 50,000 km² has the 2nd lowest PM 2.5 level, based on standard deviation of PM 2.5 level?
Which state with a land area greater than 50,000 km² shows the 2nd lowest PM2.5 level, according to its standard deviation of PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] print(required_state) true_code()
Chhattisgarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].std().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] return required_state </code>
64
312
area_based
Which state with a land area greater than 50,000 km² has the lowest PM 10 level, based on 25th percentile of PM 10 level?
Which state having a land area exceeding 50,000 km² registers the minimum PM10 level, based on its 25th percentile PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] print(required_state) true_code()
Arunachal Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] return required_state </code>
65
315
area_based
Which state with a land area greater than 50,000 km² has the 2nd highest PM 2.5 level, based on average PM 2.5 level?
Which state with a land area greater than 50,000 km² shows the 2nd highest PM2.5 level, according to its average PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] print(required_state) true_code()
Uttar Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].mean().reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] return required_state </code>
66
327
area_based
Which state with a land area greater than 50,000 km² has the highest PM 10 level, based on 25th percentile of PM 10 level?
Which state with a land area greater than 50,000 km² shows the highest PM10 level, according to its 25th percentile PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[0]['state'] print(required_state) true_code()
Himachal Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].quantile(0.25).reset_index() merged_data = pd.merge(state_pm, states_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 50000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[0]['state'] return required_state </code>
67
328
area_based
Which union territory with a land area greater than 1,000 km² has the 2nd lowest PM 10 level, based on 25th percentile of PM 10 level?
Which union territory with a land area exceeding 1,000 km² shows the 2nd lowest PM10 level, based on its 25th percentile PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] print(required_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].quantile(0.25).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] return required_state </code>
68
336
area_based
Which union territory with a land area greater than 1,000 km² has the lowest PM 10 level, based on standard deviation of PM 10 level?
Which union territory with a land area greater than 1,000 km² shows the lowest PM10 level, based on its standard deviation of PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].std().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] print(required_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].std().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] return required_state </code>
69
346
area_based
Which union territory with a land area lesser than 1,000 km² has the 2nd highest PM 2.5 level, based on 25th percentile of PM 2.5 level?
Which union territory with a land area below 1,000 km² shows the 2nd highest PM2.5 level, based on its 25th percentile PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 1000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] print(required_state) true_code()
Puducherry
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].quantile(0.25).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 1000] required_state = filtered_data.sort_values('PM2.5', ascending=False).iloc[1]['state'] return required_state </code>
70
348
area_based
Which union territory with a land area greater than 1,000 km² has the 2nd lowest PM 10 level, based on median PM 10 level?
Which union territory with a land area greater than 1,000 km² shows the 2nd lowest PM10 level, based on its median PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].median().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] print(required_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].median().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] return required_state </code>
71
352
area_based
Which union territory with a land area lesser than 1,000 km² has the 2nd lowest PM 2.5 level, based on 75th percentile of PM 2.5 level?
Which union territory with a land area below 1,000 km² shows the 2nd lowest PM2.5 level, based on its 75th percentile PM2.5 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 1000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] print(required_state) true_code()
Chandigarh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM2.5'].quantile(0.75).reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] < 1000] required_state = filtered_data.sort_values('PM2.5').iloc[1]['state'] return required_state </code>
72
354
area_based
Which union territory with a land area greater than 1,000 km² has the highest PM 10 level, based on median PM 10 level?
Which union territory with a land area greater than 1,000 km² shows the maximum PM10 level, based on its median PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].median().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[0]['state'] print(required_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].median().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10', ascending=False).iloc[0]['state'] return required_state </code>
73
361
area_based
Which union territory with a land area greater than 1,000 km² has the lowest PM 10 level, based on total PM 10 level?
Which union territory having a land area exceeding 1,000 km² registers the minimum PM10 level, according to its total PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].sum().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] print(required_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].sum().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[0]['state'] return required_state </code>
74
370
area_based
Which union territory with a land area greater than 1,000 km² has the 2nd lowest PM 10 level, based on variance of PM 10 level?
Which union territory with a land area greater than 1,000 km² shows the 2nd lowest PM10 level, based on its variance of PM10 level?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_pm = main_data.groupby('state')['PM10'].var().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] print(required_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_pm = data.groupby('state')['PM10'].var().reset_index() filtered_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged_data = pd.merge(state_pm, filtered_data, on='state') filtered_data = merged_data[merged_data['area (km2)'] > 1000] required_state = filtered_data.sort_values('PM10').iloc[1]['state'] return required_state </code>
75
374
funding_based
In which financial year was the variance of NCAP funding release the 2nd highest across cities?
During which financial year was the variance in NCAP funding release the 2nd highest among cities?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.var() avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[len(avg_series)-2]['Year'].split()[-1] print(required_year) true_code()
2021-22
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.var() avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[len(avg_series)-2]['Year'].split()[-1] return required_year </code>
76
383
funding_based
In which financial year was the 75th percentile of NCAP funding release the lowest across cities?
In which financial year did the 75th percentile of NCAP funding release reach its minimum across cities?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.75) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[0]['Year'].split()[-1] print(required_year) true_code()
2021-22
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.75) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[0]['Year'].split()[-1] return required_year </code>
77
385
funding_based
In which financial year was the 25th percentile of NCAP funding release the highest across cities?
In which financial year did the 25th percentile of NCAP funding release reach its peak across cities?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.25) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[len(avg_series)-1]['Year'].split()[-1] print(required_year) true_code()
2020-21
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.25) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[len(avg_series)-1]['Year'].split()[-1] return required_year </code>
78
389
funding_based
In which financial year was the 25th percentile of NCAP funding release the 3rd lowest across cities?
In which financial year did the 25th percentile of NCAP funding release rank 3rd lowest across cities?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.25) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[2]['Year'].split()[-1] print(required_year) true_code()
2020-21
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): df = ncap_funding_data[ ['Amount released during FY 2019-20', 'Amount released during FY 2020-21', 'Amount released during FY 2021-22'] ] avg_series = df.quantile(0.25) avg_series = avg_series.sort_values().reset_index() avg_series.columns = ['Year', 'Amount'] required_year = avg_series.iloc[2]['Year'].split()[-1] return required_year </code>
79
393
funding_based
Report the state(excluding union territories) that received the highest NCAP funding relative to its land area on a per-square.
Report the state (excluding union territories) that received the maximum NCAP funding relative to its land area on a per-square basis.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[0]['state'] print(required_state) true_code()
Punjab
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[0]['state'] return required_state </code>
80
396
funding_based
Report the state(excluding union territories) that received the 4th highest NCAP funding relative to its land area on a per-square.
Provide the state (excluding union territories) that obtained the 4th maximum NCAP funding in proportion to its land area per square unit.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[3]['state'] print(required_state) true_code()
Uttarakhand
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == False][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[3]['state'] return required_state </code>
81
398
funding_based
Report the union territory that received the 2nd highest NCAP funding relative to its land area on a per-square.
Provide the union territory that obtained the 2nd highest NCAP funding in proportion to its land area per square unit.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[1]['state'] print(required_state) true_code()
Delhi
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): funding_per_state = ncap_funding_data.groupby('state')['Total fund released'].sum().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True][['state', 'area (km2)']] merged = pd.merge(funding_per_state, filtered_states_data, on='state') merged['funding_per_sqkm'] = merged['Total fund released'] / merged['area (km2)'] required_state = merged.sort_values('funding_per_sqkm', ascending=False).iloc[1]['state'] return required_state </code>
82
399
funding_based
Which state has the lowest difference between allocated NCAP funding and actual utilisation as on June 2022?
Report the state with the lowest difference between allocated NCAP funding and actual utilization as of June 2022.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('state')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference').iloc[0]['state'] print(req_loc) true_code()
Maharashtra
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('state')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference').iloc[0]['state'] return req_loc </code>
83
404
funding_based
Which city has the 2nd lowest difference between allocated NCAP funding and actual utilisation as on June 2022?
Report the city with the second smallest difference between allocated NCAP funding and its actual utilization as of June 2022.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('city')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference').iloc[1]['city'] print(req_loc) true_code()
Nashik
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('city')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference').iloc[1]['city'] return req_loc </code>
84
407
funding_based
Which state has the 5th highest difference between allocated NCAP funding and actual utilisation as on June 2022?
Which state presents the 5th highest difference between allocated NCAP funds and their actual utilization as of June 2022?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('state')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference', ascending=False).iloc[4]['state'] print(req_loc) true_code()
Jharkhand
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data['Difference'] = ncap_funding_data['Total fund released'] - ncap_funding_data['Utilisation as on June 2022'] df = ncap_funding_data.groupby('state')['Difference'].sum().reset_index() req_loc = df.sort_values('Difference', ascending=False).iloc[4]['state'] return req_loc </code>
85
413
funding_based
Which state saw the 4th highest increment in funding between FY 2020-21 and FY 2021-22?
Report the state that observed the 4th highest increment in funding between FY 2020-21 and FY 2021-22.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2020-21' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['state'] print(result) true_code()
Madhya Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2020-21' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['state'] return result </code>
86
416
funding_based
Which city saw the 4th highest increment in funding between FY 2019-20 and FY 2020-21?
Identify the city that saw the 4th largest rise in funding between FY 2019-20 and FY 2020-21.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2020-21' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('city')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['city'] print(result) true_code()
Patiala
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2020-21' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('city')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['city'] return result </code>
87
420
funding_based
Which state saw the 3rd lowest decrement in funding between FY 2019-20 and FY 2021-22?
Identify the state that experienced the 3rd smallest decrease in funding from FY 2019-20 to FY 2021-22.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=False) result = sorted_change.iloc[2]['state'] print(result) true_code()
Andhra Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=False) result = sorted_change.iloc[2]['state'] return result </code>
88
429
funding_based
Which state saw the 5th highest decrement in funding between FY 2019-20 and FY 2020-21?
Report the state with the 5th most significant drop in funding between FY 2019-20 and FY 2020-21.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2020-21' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=False) result = sorted_change.iloc[len(sorted_change)-5]['state'] print(result) true_code()
Gujarat
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2020-21' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=False) result = sorted_change.iloc[len(sorted_change)-5]['state'] return result </code>
89
430
funding_based
Which state saw the 4th highest increment in funding between FY 2019-20 and FY 2021-22?
Determine which state observed the 4th highest increment in funding between FY 2019-20 and FY 2021-22.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['state'] print(result) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2019-20' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-4]['state'] return result </code>
90
431
funding_based
Which state saw the 5th highest increment in funding between FY 2020-21 and FY 2021-22?
Which state saw the 5th largest increase in funding from FY 2020-21 to FY 2021-22?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") col_start = 'Amount released during FY 2020-21' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-5]['state'] print(result) true_code()
West Bengal
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): col_start = 'Amount released during FY 2020-21' col_end = 'Amount released during FY 2021-22' ncap_funding_data['change'] = ncap_funding_data[col_end] - ncap_funding_data[col_start] funding_change = ncap_funding_data.groupby('state')['change'].sum().reset_index() sorted_change = funding_change.sort_values('change', ascending=True) result = sorted_change.iloc[len(sorted_change)-5]['state'] return result </code>
91
444
funding_based
Which city utilised the 4th highest percentage of its allocated NCAP funding as of June 2022?
Identify the city with the 4th highest percentage use of its allocated NCAP funds as of June 2022.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[3]['city'] print(ans) true_code()
Indore
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[3]['city'] return ans </code>
92
446
funding_based
Which state utilised the 3rd lowest percentage of its allocated NCAP funding as of June 2022?
Which state had the 3rd lowest percentage utilization of its NCAP funds as of June 2022?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data = ncap_funding_data.groupby('state')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent').iloc[2]['state'] print(ans) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data = ncap_funding_data.groupby('state')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent').iloc[2]['state'] return ans </code>
93
447
funding_based
Which city utilised the 2nd lowest percentage of its allocated NCAP funding as of June 2022?
Report the city that showed the second smallest percentage utilization of its allocated NCAP funding by June 2022.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent').iloc[1]['city'] print(ans) true_code()
Tuticorin
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent').iloc[1]['city'] return ans </code>
94
449
funding_based
Which city utilised the highest percentage of its allocated NCAP funding as of June 2022?
Determine the city that utilized the maximum percentage of its allocated NCAP funding by June 2022.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[0]['city'] print(ans) true_code()
Visakhapatnam
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data = ncap_funding_data.groupby('city')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[0]['city'] return ans </code>
95
450
funding_based
Which state utilised the 5th highest percentage of its allocated NCAP funding as of June 2022?
Which state exhibited the 5th highest percentage utilization of its allocated NCAP funds as of June 2022?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") ncap_funding_data = ncap_funding_data.groupby('state')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[4]['state'] print(ans) true_code()
Madhya Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): ncap_funding_data = ncap_funding_data.groupby('state')[['Total fund released','Utilisation as on June 2022']].sum().reset_index() ncap_funding_data['utilisation_percent'] = (ncap_funding_data['Utilisation as on June 2022'] / ncap_funding_data['Total fund released']) * 100 ans = ncap_funding_data.sort_values('utilisation_percent', ascending=False).iloc[4]['state'] return ans </code>
96
451
funding_based
Identify the state that has the 5th lowest number of cities receiving NCAP funding.
Report the state having the 5th lowest count of cities receiving NCAP funding.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city').iloc[4]['state'] print(max_cities_state) true_code()
Tamil Nadu
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city').iloc[4]['state'] return max_cities_state </code>
97
452
funding_based
Identify the state that has the highest number of cities receiving NCAP funding.
Which state possesses the highest number of cities with NCAP funding?
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city', ascending=False).iloc[0]['state'] print(max_cities_state) true_code()
Maharashtra
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city', ascending=False).iloc[0]['state'] return max_cities_state </code>
98
453
funding_based
Identify the state that has the 3rd highest number of cities receiving NCAP funding.
Identify the state that has the 3rd highest number of cities benefiting from NCAP funding.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city', ascending=False).iloc[2]['state'] print(max_cities_state) true_code()
Andhra Pradesh
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): state_city_counts = ncap_funding_data.groupby('state')['city'].nunique().reset_index() max_cities_state = state_city_counts.sort_values('city', ascending=False).iloc[2]['state'] return max_cities_state </code>
99
456
funding_based
Identify the union territory that has the highest number of cities receiving NCAP funding.
Identify the union territory with the highest count of cities receiving NCAP funding.
def true_code(): import pandas as pd main_data = pd.read_pickle("preprocessed/main_data.pkl") states_data = pd.read_pickle("preprocessed/states_data.pkl") ncap_funding_data = pd.read_pickle("preprocessed/ncap_funding_data.pkl") city_count = ncap_funding_data.groupby('state')['city'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True] merged_df = pd.merge(filtered_states_data, city_count, on='state', how='inner') max_cities_state = merged_df.sort_values('city', ascending=False).iloc[0]['state'] print(max_cities_state) true_code()
Jammu and Kashmir
<code> import pandas as pd def get_response(data: pd.DataFrame, states_data: pd.DataFrame, ncap_funding_data: pd.DataFrame): city_count = ncap_funding_data.groupby('state')['city'].nunique().reset_index() filtered_states_data = states_data[states_data['isUnionTerritory'] == True] merged_df = pd.merge(filtered_states_data, city_count, on='state', how='inner') max_cities_state = merged_df.sort_values('city', ascending=False).iloc[0]['state'] return max_cities_state </code>
End of preview.

No dataset card yet

Downloads last month
7