Dataset Viewer
Search is not available for this dataset
id
stringlengths 4
12
| datetime
timestamp[ns] | target
float64 0
804
⌀ | category
stringclasses 3
values |
|---|---|---|---|
GE_1
| 2015-05-21T15:45:00
| 0.157
|
15m
|
GE_1
| 2015-05-21T16:00:00
| 0.273
|
15m
|
GE_1
| 2015-05-21T16:15:00
| 0.311
|
15m
|
GE_1
| 2015-05-21T16:30:00
| 0.28
|
15m
|
GE_1
| 2015-05-21T16:45:00
| 0.265
|
15m
|
GE_1
| 2015-05-21T17:00:00
| 0.446
|
15m
|
GE_1
| 2015-05-21T17:15:00
| 0.231
|
15m
|
GE_1
| 2015-05-21T17:30:00
| 0.187
|
15m
|
GE_1
| 2015-05-21T17:45:00
| 0.164
|
15m
|
GE_1
| 2015-05-21T18:00:00
| 0.161
|
15m
|
GE_1
| 2015-05-21T18:15:00
| 0.164
|
15m
|
GE_1
| 2015-05-21T18:30:00
| 0.138
|
15m
|
GE_1
| 2015-05-21T18:45:00
| 0.12
|
15m
|
GE_1
| 2015-05-21T19:00:00
| 0.15
|
15m
|
GE_1
| 2015-05-21T19:15:00
| 0.18
|
15m
|
GE_1
| 2015-05-21T19:30:00
| 0.113
|
15m
|
GE_1
| 2015-05-21T19:45:00
| 0.137
|
15m
|
GE_1
| 2015-05-21T20:00:00
| 0.133
|
15m
|
GE_1
| 2015-05-21T20:15:00
| 0.137
|
15m
|
GE_1
| 2015-05-21T20:30:00
| 0.12
|
15m
|
GE_1
| 2015-05-21T20:45:00
| 0.12
|
15m
|
GE_1
| 2015-05-21T21:00:00
| 0.182
|
15m
|
GE_1
| 2015-05-21T21:15:00
| 0.063
|
15m
|
GE_1
| 2015-05-21T21:30:00
| 0.115
|
15m
|
GE_1
| 2015-05-21T21:45:00
| 0.082
|
15m
|
GE_1
| 2015-05-21T22:00:00
| 0.073
|
15m
|
GE_1
| 2015-05-21T22:15:00
| 0.08
|
15m
|
GE_1
| 2015-05-21T22:30:00
| 0.08
|
15m
|
GE_1
| 2015-05-21T22:45:00
| 0.08
|
15m
|
GE_1
| 2015-05-21T23:00:00
| 0.078
|
15m
|
GE_1
| 2015-05-21T23:15:00
| 0.069
|
15m
|
GE_1
| 2015-05-21T23:30:00
| 0.101
|
15m
|
GE_1
| 2015-05-21T23:45:00
| 0.072
|
15m
|
GE_1
| 2015-05-22T00:00:00
| 0.08
|
15m
|
GE_1
| 2015-05-22T00:15:00
| 0.078
|
15m
|
GE_1
| 2015-05-22T00:30:00
| 0.062
|
15m
|
GE_1
| 2015-05-22T00:45:00
| 0.08
|
15m
|
GE_1
| 2015-05-22T01:00:00
| 0.067
|
15m
|
GE_1
| 2015-05-22T01:15:00
| 0.083
|
15m
|
GE_1
| 2015-05-22T01:30:00
| 0.087
|
15m
|
GE_1
| 2015-05-22T01:45:00
| 0.073
|
15m
|
GE_1
| 2015-05-22T02:00:00
| 0.088
|
15m
|
GE_1
| 2015-05-22T02:15:00
| 0.07
|
15m
|
GE_1
| 2015-05-22T02:30:00
| 0.072
|
15m
|
GE_1
| 2015-05-22T02:45:00
| 0.08
|
15m
|
GE_1
| 2015-05-22T03:00:00
| 0.068
|
15m
|
GE_1
| 2015-05-22T03:15:00
| 0.092
|
15m
|
GE_1
| 2015-05-22T03:30:00
| 0.098
|
15m
|
GE_1
| 2015-05-22T03:45:00
| 0.082
|
15m
|
GE_1
| 2015-05-22T04:00:00
| 0.125
|
15m
|
GE_1
| 2015-05-22T04:15:00
| 0.088
|
15m
|
GE_1
| 2015-05-22T04:30:00
| 0.143
|
15m
|
GE_1
| 2015-05-22T04:45:00
| 0.117
|
15m
|
GE_1
| 2015-05-22T05:00:00
| 0.153
|
15m
|
GE_1
| 2015-05-22T05:15:00
| 0.176
|
15m
|
GE_1
| 2015-05-22T05:30:00
| 0.266
|
15m
|
GE_1
| 2015-05-22T05:45:00
| 0.419
|
15m
|
GE_1
| 2015-05-22T06:00:00
| 0.459
|
15m
|
GE_1
| 2015-05-22T06:15:00
| 0.56
|
15m
|
GE_1
| 2015-05-22T06:30:00
| 1.019
|
15m
|
GE_1
| 2015-05-22T06:45:00
| 1.046
|
15m
|
GE_1
| 2015-05-22T07:00:00
| 1.068
|
15m
|
GE_1
| 2015-05-22T07:15:00
| 0.805
|
15m
|
GE_1
| 2015-05-22T07:30:00
| 1.544
|
15m
|
GE_1
| 2015-05-22T07:45:00
| 1.645
|
15m
|
GE_1
| 2015-05-22T08:00:00
| 2.473
|
15m
|
GE_1
| 2015-05-22T08:15:00
| 2.046
|
15m
|
GE_1
| 2015-05-22T08:30:00
| 1.987
|
15m
|
GE_1
| 2015-05-22T08:45:00
| 1.718
|
15m
|
GE_1
| 2015-05-22T09:00:00
| 1.674
|
15m
|
GE_1
| 2015-05-22T09:15:00
| 1.69
|
15m
|
GE_1
| 2015-05-22T09:30:00
| 0.82
|
15m
|
GE_1
| 2015-05-22T09:45:00
| 1.208
|
15m
|
GE_1
| 2015-05-22T10:00:00
| 1.278
|
15m
|
GE_1
| 2015-05-22T10:15:00
| 1.088
|
15m
|
GE_1
| 2015-05-22T10:30:00
| 0.779
|
15m
|
GE_1
| 2015-05-22T10:45:00
| 1.162
|
15m
|
GE_1
| 2015-05-22T11:00:00
| 1.537
|
15m
|
GE_1
| 2015-05-22T11:15:00
| 1.742
|
15m
|
GE_1
| 2015-05-22T11:30:00
| 1.762
|
15m
|
GE_1
| 2015-05-22T11:45:00
| 1.217
|
15m
|
GE_1
| 2015-05-22T12:00:00
| 0.346
|
15m
|
GE_1
| 2015-05-22T12:15:00
| 0.442
|
15m
|
GE_1
| 2015-05-22T12:30:00
| 0.697
|
15m
|
GE_1
| 2015-05-22T12:45:00
| 0.69
|
15m
|
GE_1
| 2015-05-22T13:00:00
| 0.348
|
15m
|
GE_1
| 2015-05-22T13:15:00
| 0.94
|
15m
|
GE_1
| 2015-05-22T13:30:00
| 1.143
|
15m
|
GE_1
| 2015-05-22T13:45:00
| 1.429
|
15m
|
GE_1
| 2015-05-22T14:00:00
| 1.35
|
15m
|
GE_1
| 2015-05-22T14:15:00
| 0.918
|
15m
|
GE_1
| 2015-05-22T14:30:00
| 0.979
|
15m
|
GE_1
| 2015-05-22T14:45:00
| 1.318
|
15m
|
GE_1
| 2015-05-22T15:00:00
| 1.231
|
15m
|
GE_1
| 2015-05-22T15:15:00
| 0.754
|
15m
|
GE_1
| 2015-05-22T15:30:00
| 0.475
|
15m
|
GE_1
| 2015-05-22T15:45:00
| 0.584
|
15m
|
GE_1
| 2015-05-22T16:00:00
| 0.529
|
15m
|
GE_1
| 2015-05-22T16:15:00
| 0.313
|
15m
|
GE_1
| 2015-05-22T16:30:00
| 0.403
|
15m
|
End of preview. Expand
in Data Studio
Timeseries Data Processing
This repository contains a script for loading and processing time series data using the datasets library and converting it to a pandas DataFrame for further analysis.
Dataset
The dataset used contains time series data with the following features:
id: Identifier for the dataset, formatted asCountry_Number of Household(e.g.,GE_1for Germany, household 1).datetime: Timestamp indicating the date and time of the observation.target: Energy consumption measured in kilowatt-hours (kWh).category: The resolution of the time series (e.g., 15 minutes, 30 minutes, 60 minutes).
Data Sources
The research uses raw data from the following open-source databases:
- Netherlands Smart Meter Data: Liander Open Data
- UK Smart Meter Data: London Datastore
- Germany Smart Meter Data: Open Power System Data
- Australian Smarter Data:Smart-Grid Smart-City Customer Trial Data
Requirements
- Python 3.6+
datasetslibrarypandaslibrary
You can install the required libraries using pip:
python -m pip install "dask[complete]" # Install everything
Usage
The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.
import dask.dataframe as dd
# read parquet file
df = dd.read_parquet("hf://datasets/Weijie1996/load_timeseries/30m_resolution_ge/ge_30m.parquet")
# change to pandas dataframe
df = df.compute()
Output
id datetime target category
0 NL_1 2013-01-01 00:00:00 0.117475 60m
1 NL_1 2013-01-01 01:00:00 0.104347 60m
2 NL_1 2013-01-01 02:00:00 0.103173 60m
3 NL_1 2013-01-01 03:00:00 0.101686 60m
4 NL_1 2013-01-01 04:00:00 0.099632 60m
Related Work
This dataset has been utilized in the following research studies:
Comparative Assessment of Generative Models for Transformer- and Consumer-Level Load Profiles Generation
- GitHub Repository: Generative Models for Customer Profile Generation
A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction
- GitHub Repository: Full Convolutional Profile Flow
- Downloads last month
- 24