Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
benchmarkId: string
modelId: string
month: string
metrics: struct<totalPnl: int64, accuracy: double>
vs
month: string
worlds: list<item: struct<worldId: string, question: string, outcome: bool, month: string, generatedAt: timestamp[s], timeline: list<item: null>, npcs: list<item: null>, events: list<item: null>, feedPosts: list<item: null>, metadata: struct<>>>
trajectories: list<item: struct<trajectoryId: string, agentId: string, month: string, scenario: string, steps: list<item: struct<stepNumber: int64, environmentState: struct<agentBalance: int64, agentPnL: int64>, llm_calls: list<item: struct<model: string, user_prompt: string, response: string>>, action: struct<type: string, parameters: struct<amount: int64>, success: bool>, reward: int64>>, totalReward: int64, finalPnL: int64, metrics: struct<tradesExecuted: int64>>>
benchmarks: list<item: struct<benchmarkId: string, modelId: string, month: string, metrics: struct<totalPnl: int64, accuracy: int64>>>
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
benchmarkId: string
modelId: string
month: string
metrics: struct<totalPnl: int64, accuracy: double>
vs
month: string
worlds: list<item: struct<worldId: string, question: string, outcome: bool, month: string, generatedAt: timestamp[s], timeline: list<item: null>, npcs: list<item: null>, events: list<item: null>, feedPosts: list<item: null>, metadata: struct<>>>
trajectories: list<item: struct<trajectoryId: string, agentId: string, month: string, scenario: string, steps: list<item: struct<stepNumber: int64, environmentState: struct<agentBalance: int64, agentPnL: int64>, llm_calls: list<item: struct<model: string, user_prompt: string, response: string>>, action: struct<type: string, parameters: struct<amount: int64>, success: bool>, reward: int64>>, totalReward: int64, finalPnL: int64, metrics: struct<tradesExecuted: int64>>>
benchmarks: list<item: struct<benchmarkId: string, modelId: string, month: string, metrics: struct<totalPnl: int64, accuracy: int64>>>Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
The task_categories "game-simulation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata
Warning:
The task_categories "agent-training" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
elizaos/babylon-game-data
Dataset Description
Complete Babylon game data for reinforcement learning and offline simulation.
Version: 1.0.0
Collected: 2025-11-16T04:18:42.175Z
Game Worlds: 2
Agent Trajectories: 20
Benchmarks: 4
What's Included
1. Complete Game Worlds
- Prediction market scenarios
- 30-day timelines with events
- NPC conversations and interactions
- Feed posts and social dynamics
- Ground truth outcomes
2. Agent Trajectories
- Complete agent decision sequences
- LLM calls (prompts and responses)
- Game environment at each step
- Actions taken and outcomes
- Rewards and ground truth
3. Benchmark Results
- Model performance evaluations
- Comparison to baselines
- Detailed metrics
Data Organization
By Month
by-month/
2025-10.json - October 2025 data
2025-11.json - November 2025 data
2025-12.json - December 2025 data
...
Each month file contains:
- Game worlds generated that month
- Agent trajectories from that month
- Benchmark results from that month
Offline Simulation
This dataset enables offline, faster-than-real-time simulation:
# Download dataset
from datasets import load_dataset
dataset = load_dataset("elizaos/babylon-game-data")
# Load into Babylon offline simulator
bun run scripts/run-offline-simulation.ts \
--data=path/to/downloaded/data.json \
--fast-forward \
--agent=my-agent
Use Cases
- RL Training - Train agents on historical gameplay
- Model Evaluation - Test agents on past scenarios
- Offline Development - Develop without live system
- Research - Analyze agent behavior and game dynamics
- Faster Testing - Run simulations at high speed
Data Format
Game World
{
"worldId": "...",
"month": "2025-11",
"question": "Will Bitcoin reach $100k?",
"outcome": true,
"timeline": [ /* 30 days of events */ ],
"npcs": [ /* NPC data */ ],
"events": [ /* All events */ ],
"feedPosts": [ /* Social feed */ ]
}
Agent Trajectory
{
"trajectoryId": "...",
"month": "2025-11",
"steps": [
{
"environment_state": { /* game state */ },
"llm_calls": [ /* agent decisions */ ],
"action": { /* what agent did */ },
"reward": 50
}
],
"totalReward": 1500,
"finalPnL": 1500
}
Citation
@dataset{babylon_game_data_2025,
title = {Babylon Game Data - Complete RL Dataset},
author = {Babylon Labs},
year = {2025},
url = {https://huggingface.co/datasets/elizaos/babylon-game-data}
}
License
MIT
- Downloads last month
- 20