Dataset Viewer
Auto-converted to Parquet
id
int64
1
60
name
stringlengths
3
21
docstring
stringlengths
17
491
annotations
stringlengths
52
529
ground_truth
stringlengths
69
1.42k
1
abs
Calculate the absolute value. If input is positive, return the input. Otherwise, return the negation of the input.
method Abs(x: int) returns (y: int) ensures x>=0 ==> x==y ensures x<0 ==> x+y==0
method Abs(x: int) returns (y: int) ensures x>=0 ==> x==y ensures x<0 ==> x+y==0 { if x < 0 { return -x; } else { return x; } }
2
all_digits
Returns `true` if all characters in the string `s` are decimal digits (0-9), `false` otherwise.
method allDigits(s: string) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |s| ==> s[i] in "0123456789")
method allDigits(s: string) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |s| ==> s[i] in "0123456789") { result:=true ; for i := 0 to |s| invariant result <==> (forall ii :: 0 <= ii < i ==> s[ii] in "0123456789") { if ! (s[i] in "0123456789"){ return false; } } }
3
array_append
Appends integer b to the end of array a and returns the resulting array c.
method append(a:array<int>, b:int) returns (c:array<int>) ensures a[..] + [b] == c[..]
method append(a:array<int>, b:int) returns (c:array<int>) ensures a[..] + [b] == c[..] { c := new int[a.Length+1]; var i:= 0; while (i < a.Length) invariant 0 <= i <= a.Length invariant forall ii::0<=ii<i ==> c[ii]==a[ii] { c[i] := a[i]; i:=i+1; } c[a.Length]:=b; }
4
array_concat
Concatenates two arrays a and b, returning the resulting array c.
method concat(a:array<int>, b:array<int>) returns (c:array<int>) ensures c.Length==b.Length+a.Length ensures forall k :: 0 <= k < a.Length ==> c[k] == a[k] ensures forall k :: 0 <= k < b.Length ==> c[k+a.Length] == b[k]
method concat(a:array<int>, b:array<int>) returns (c:array<int>) ensures c.Length==b.Length+a.Length ensures forall k :: 0 <= k < a.Length ==> c[k] == a[k] ensures forall k :: 0 <= k < b.Length ==> c[k+a.Length] == b[k] { c := new int[a.Length+b.Length]; var i:= 0; while (i < c.Length) invariant 0 <= i <= c.Length invariant if i<a.Length then c[..i]==a[..i] else c[..i]==a[..]+b[..(i-a.Length)] { c[i] := if i<a.Length then a[i] else b[i-a.Length]; i:=i+1; } }
5
array_copy
Iteratively copy an array.
method iter_copy<T(0)>(s: array<T>) returns (t: array<T>) ensures s.Length==t.Length ensures forall i::0<=i<s.Length ==> s[i]==t[i]
method iter_copy<T(0)>(s: array<T>) returns (t: array<T>) ensures s.Length==t.Length ensures forall i::0<=i<s.Length ==> s[i]==t[i] { t := new T[s.Length]; var i:= 0; while (i < s.Length) invariant 0 <= i <= s.Length invariant forall x :: 0 <= x < i ==> s[x] == t[x] { t[i] := s[i]; i:=i+1; } }
6
array_product
Calculate the pair-wise product of two arrays.
method arrayProduct(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] * b[i]==c[i]
method arrayProduct(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] * b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j:: 0 <= j< i==> a[j] * b[j]==c[j] { c[i]:=a[i]*b[i]; i:=i+1; } }
7
array_sum
Calculate the pair-wise sum of two arrays.
method arraySum(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] + b[i]==c[i]
method arraySum(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] + b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j:: 0 <= j< i==> a[j] + b[j]==c[j] { c[i]:=a[i]+b[i]; i:=i+1; } }
8
avg
Calculate the average value of two integers. There are no restrictions nor overflow protection on the inputs.
method ComputeAvg(a: int, b: int) returns (avg:int) ensures avg == (a+b)/2
method ComputeAvg(a: int, b: int) returns (avg:int) ensures avg == (a+b)/2 { avg:= (a + b) / 2; }
9
below_zero
You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return the presum array of operations and True. Otherwise it should return the presum array and False. Presum array s of operations is an array with length |operations| + 1, representing the cumulative sum at each step, initialized with s[0]==0.
method below_zero(operations: seq<int>) returns (s:array<int>, result:bool) ensures s.Length == |operations| + 1 ensures s[0]==0 ensures forall i :: 0 <= i < s.Length-1 ==> s[i+1]==s[i]+operations[i] ensures result == true ==> (exists i :: 1 <= i <= |operations| && s[i] < 0) ensures result == false ==> forall i :: 0 <= i < s.Length ==> s[i] >= 0
method below_zero(operations: seq<int>) returns (s:array<int>, result:bool) ensures s.Length == |operations| + 1 ensures s[0]==0 ensures forall i :: 0 <= i < s.Length-1 ==> s[i+1]==s[i]+operations[i] ensures result == true ==> (exists i :: 1 <= i <= |operations| && s[i] < 0) ensures result == false ==> forall i :: 0 <= i < s.Length ==> s[i] >= 0 { result := false; s := new int[|operations| + 1]; var i := 0; s[i] := 0; while i < s.Length invariant 0 <= i <= s.Length invariant s[0]==0 invariant s.Length == |operations| + 1 invariant forall x :: 0 <= x < i-1 ==> s[x+1]==s[x]+operations[x] { if i>0{ s[i] := s[i - 1] + operations[i - 1]; } i := i + 1; } i:=0; while i < s.Length invariant 0 <= i <= s.Length invariant forall x :: 0 <= x < i ==> s[x] >= 0 { if s[i] < 0 { result := true; return; } i := i + 1; } }
10
binary_search
Binary search a sorted possibly empty array for a key. Return the index such that array[index-1] < key <= array[index].
method BinarySearch(a: array<int>, key: int) returns (n: int) requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] ensures 0<= n <=a.Length ensures forall i :: 0<= i < n ==> a[i] < key ensures n == a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] < key ensures forall i :: n<= i < a.Length ==> a[i]>=key
method BinarySearch(a: array<int>, key: int) returns (n: int) requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] ensures 0<= n <=a.Length ensures forall i :: 0<= i < n ==> a[i] < key ensures n == a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] < key ensures forall i :: n<= i < a.Length ==> a[i]>=key { var lo, hi := 0, a.Length; while lo<hi invariant 0<= lo <= hi <= a.Length invariant forall i :: 0<=i<lo ==> a[i] < key invariant forall i :: hi<=i<a.Length ==> a[i] >= key { var mid := (lo + hi) / 2; if a[mid] < key { lo := mid + 1; } else { hi := mid; } } n:=lo; }
11
bubble_sort
Sorts the array a in non-decreasing order. Ensure that the sorted elements make up the same set of elements as the original.
method BubbleSort(a: array<int>) modifies a ensures forall i,j::0<= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..])==multiset(old(a[..]))
method BubbleSort(a: array<int>) modifies a ensures forall i,j::0<= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..])==multiset(old(a[..])) { var i := a.Length - 1; while (i > 0) invariant i < 0 ==> a.Length == 0 invariant -1 <= i < a.Length invariant forall ii,jj::i <= ii< jj <a.Length ==> a[ii] <= a[jj] invariant forall k,k'::0<=k<=i<k'<a.Length==>a[k]<=a[k'] invariant multiset(a[..])==multiset(old(a[..])) { var j := 0; while (j < i) invariant 0 < i < a.Length && 0 <= j <= i invariant forall ii,jj::i<= ii <= jj <a.Length ==> a[ii] <= a[jj] invariant forall k, k'::0<=k<=i<k'<a.Length==>a[k]<=a[k'] invariant forall k :: 0 <= k <= j ==> a[k] <= a[j] invariant multiset(a[..])==multiset(old(a[..])) { if (a[j] > a[j + 1]) { a[j], a[j + 1] := a[j + 1], a[j]; } j := j + 1; } i := i - 1; } }
12
cal_ans
Calculate the quotient and remainder of 191 divided by 7. Ensure that the quotient equals to 191/7 and the remainder equals to 191%7.
method CalDiv() returns (x:int, y:int) ensures x==191/7 ensures y==191%7
method CalDiv() returns (x:int, y:int) ensures x==191/7 ensures y==191%7 { x, y := 0, 191; while 7 <= y invariant 0 <= y && 7 * x + y == 191 { x := x+1; y:=191-7*x; } }
13
cal_sum
Calculate the sum from 1 to N. Require that N is a non-negative integer. Return the sum.
method Sum(N:int) returns (s:int) requires N >= 0 ensures s == N * (N + 1) / 2
method Sum(N:int) returns (s:int) requires N >= 0 ensures s == N * (N + 1) / 2 { var n := 0; s := 0; while n != N invariant 0 <= n <= N invariant s == n * (n + 1) / 2 { n := n + 1; s := s + n; } }
14
canyon_search
Calculate the smallest difference of any two values from two non-decreasing arrays. Require that two input arrays to be non-empty and sorted. Ensure that the return value exists as one difference and is the smallest one.
method CanyonSearch(a: array<int>, b: array<int>) returns (d:nat) requires a.Length !=0 && b.Length!=0 requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] requires forall i,j :: 0<=i<j<b.Length ==> b[i]<=b[j] ensures exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) ensures forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j])
method CanyonSearch(a: array<int>, b: array<int>) returns (d:nat) requires a.Length !=0 && b.Length!=0 requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] requires forall i,j :: 0<=i<j<b.Length ==> b[i]<=b[j] ensures exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) ensures forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) { var m,n:=0,0; d:=if a[0] < b[0] then (b[0]-a[0]) else (a[0]-b[0]); while m<a.Length && n<b.Length invariant 0<=m<=a.Length && 0<=n<=b.Length decreases a.Length -m+b.Length-n invariant exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) invariant forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=(if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]))|| (m<=i&&n<=j) { var t := if a[m] < b[n] then (b[n]-a[m]) else (a[m]-b[n]); d:=if t<d then t else d; if case a[m]<=b[n] => m:=m+1; case b[n]<=a[m] => n:=n+1; } }
15
compare
Return true if two elements are equal. No requirements on inputs.
method Compare<T(==)>(a: T, b: T) returns (eq: bool) ensures a==b ==> eq==true ensures a!=b ==> eq==false
method Compare<T(==)>(a: T, b: T) returns (eq: bool) ensures a==b ==> eq==true ensures a!=b ==> eq==false { if a == b { eq := true; } else { eq := false; } }
16
convert_map_key
Converts the keys of the inputs map using the function f. Require that f is an injective function from domain natural numbers to range natural numbers. Ensure that returned new map r has f(key) as the new key and the same value.
method convert_map_key(inputs: map<nat, bool>, f: nat->nat) returns(r:map<nat, bool>) requires forall n1: nat, n2: nat :: n1 != n2 ==> f(n1) != f(n2) ensures forall k :: k in inputs <==> f(k) in r ensures forall k :: k in inputs ==> r[f(k)] == inputs[k]
method convert_map_key(inputs: map<nat, bool>, f: nat->nat) returns(r:map<nat, bool>) requires forall n1: nat, n2: nat :: n1 != n2 ==> f(n1) != f(n2) ensures forall k :: k in inputs <==> f(k) in r ensures forall k :: k in inputs ==> r[f(k)] == inputs[k] { r:= map k | k in inputs :: f(k) := inputs[k]; }
17
copy_part
Copies `len` elements from `src` array starting at `sStart` to `dest` array starting at `dStart` and returns the modified `dest` array. Ensure r and dest have the same length. Ensure original `dest` elements outside copied range stay the same.
method copy( src: array<int>, sStart: nat, dest: array<int>, dStart: nat, len: nat) returns (r: array<int>) requires src.Length >= sStart + len requires dest.Length >= dStart + len ensures r.Length == dest.Length ensures r[..dStart] == dest[..dStart] ensures r[dStart + len..] == dest[dStart + len..] ensures r[dStart..len+dStart] == src[sStart..len+sStart]
method copy( src: array<int>, sStart: nat, dest: array<int>, dStart: nat, len: nat) returns (r: array<int>) requires src.Length >= sStart + len requires dest.Length >= dStart + len ensures r.Length == dest.Length ensures r[..dStart] == dest[..dStart] ensures r[dStart + len..] == dest[dStart + len..] ensures r[dStart..len+dStart] == src[sStart..len+sStart] { if len == 0 { return dest; } var i: nat := 0; r := new int[dest.Length]; while (i < r.Length) invariant i <= r.Length invariant r[..i] == dest[..i] { r[i] := dest[i]; i := i + 1; } assert r[..]==dest[..]; i := 0; while (i < len) invariant i <= len invariant r[..dStart] == dest[..dStart] invariant r[(dStart + len)..] == dest[(dStart + len)..] invariant r[dStart .. dStart + i] == src[sStart .. sStart + i] { assert r[(dStart + len)..] == dest[(dStart + len)..]; r[dStart + i] := src[sStart + i]; i := i + 1; } }
18
count_lessthan
Counts the number of integers in the numbers set that are less than the provided threshold and returns the count.
method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) ensures count == |set i | i in numbers && i < threshold|
method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) ensures count == |set i | i in numbers && i < threshold| { count := 0; var shrink := numbers; var grow := {}; while |shrink | > 0 decreases shrink invariant shrink + grow == numbers invariant grow !! shrink invariant count == |set i | i in grow && i < threshold| { var i: int :| i in shrink; shrink := shrink - {i}; var grow' := grow+{i}; assert (set i | i in grow' && i < threshold) == (set i | i in grow && i < threshold )+ if i < threshold then {i} else {}; grow := grow + {i}; if i < threshold { count := count + 1; } } }
19
double_array_elements
Doubles each element of the input integer array in place.
method double_array_elements(s: array<int>) modifies s ensures forall i :: 0 <= i < s.Length ==> s[i] == 2 * old(s[i])
method double_array_elements(s: array<int>) modifies s ensures forall i :: 0 <= i < s.Length ==> s[i] == 2 * old(s[i]) { var i:= 0; while (i < s.Length) invariant 0 <= i <= s.Length invariant forall x :: i <= x < s.Length ==> s[x] == old(s[x]) invariant forall x :: 0 <= x < i ==> s[x] == 2 * old(s[x]) { s[i] := 2 * s[i]; i := i + 1; } }
20
double_quadruple
Returns two integers, where the first is double the input value x and the second is quadruple the input value x.
method DoubleQuadruple(x: int) returns (a: int, b: int) ensures a == 2 * x && b == 4 * x
method DoubleQuadruple(x: int) returns (a: int, b: int) ensures a == 2 * x && b == 4 * x { a := 2 * x; b := 2 * a; }
21
even_list
Extracts and returns an array containing all the even numbers from the provided arr, preserving their original order. An element appears in the output if and only if it is even and in the input. Ensure the original order is preserved.
method FindEvenNumbers (arr: array<int>) returns (evenNumbers: array<int>) ensures forall x {:trigger (x%2) }:: x in arr[..] && (x%2==0)==> x in evenNumbers[..] ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..] ensures forall k :: 0 <= k < evenNumbers.Length ==> evenNumbers[k] % 2 == 0 ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==>
method FindEvenNumbers (arr: array<int>) returns (evenNumbers: array<int>) ensures forall x {:trigger (x%2) }:: x in arr[..] && (x%2==0)==> x in evenNumbers[..] ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..] ensures forall k :: 0 <= k < evenNumbers.Length ==> evenNumbers[k] % 2 == 0 ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==> exists n, m :: 0 <= n < m < arr.Length && evenNumbers[k] == arr[n] && evenNumbers[l] == arr[m] { var evenList: seq<int> := []; ghost var indices: seq<int> := []; for i := 0 to arr.Length invariant 0 <= i <= arr.Length invariant 0 <= |evenList| <= i invariant forall x {:trigger (x%2) }:: (x in arr[..i] && (x%2==0) )==> x in evenList[..] invariant forall k :: 0 <= k < |evenList| ==> evenList[k] % 2 == 0 invariant forall x :: x !in arr[..i] ==> x !in evenList invariant |evenList| == |indices| invariant forall k :: 0 <= k < |indices| ==> indices[k] < i invariant forall k, l :: 0 <= k < l < |indices| ==> indices[k] < indices[l] invariant forall k :: 0 <= k < |evenList| ==> 0 <= indices[k] < i <= arr.Length && arr[indices[k]] == evenList[k] { if arr[i]%2==0 { evenList := evenList + [arr[i]]; indices := indices + [i]; } } evenNumbers := new int[|evenList|](i requires 0 <= i < |evenList| => evenList[i]); assert evenList == evenNumbers[..]; }
22
find
Find a key in a possibly empty array. Return the index of its first occurance. Ensure index is in range. If not found, return -1.
method Find(a: array<int>, key: int) returns (index: int) ensures -1<=index<a.Length ensures index!=-1 ==> a[index]==key && (forall i :: 0 <= i < index ==> a[i] != key) ensures index == -1 ==> (forall i::0 <= i < a.Length ==> a[i] != key)
method Find(a: array<int>, key: int) returns (index: int) ensures -1<=index<a.Length ensures index!=-1 ==> a[index]==key && (forall i :: 0 <= i < index ==> a[i] != key) ensures index == -1 ==> (forall i::0 <= i < a.Length ==> a[i] != key) { index := 0; while index < a.Length invariant 0<=index<=a.Length invariant (forall i::0 <= i < index==>a[i] != key) { if a[index] == key { return; } index := index + 1; } if index >= a.Length { index := -1; } }
23
has_close_elements
Check if in given list of numbers, are any two numbers closer to each other than given non-negative threshold.
method has_close_elements(numbers: seq<real>, threshold: real) returns (res: bool) requires threshold >= 0.0 ensures res ==> exists i: int, j: int :: 0 <= i < |numbers| && 0 <= j < |numbers| && i != j && (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) < threshold ensures !res ==> (forall i: int, j: int :: 1 <= i < |numbers| && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold)
method has_close_elements(numbers: seq<real>, threshold: real) returns (res: bool) requires threshold >= 0.0 ensures res ==> exists i: int, j: int :: 0 <= i < |numbers| && 0 <= j < |numbers| && i != j && (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) < threshold ensures !res ==> (forall i: int, j: int :: 1 <= i < |numbers| && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold) { res := false; var idx: int := 0; while idx < |numbers| && !res invariant 0 <= idx <= |numbers| invariant !res invariant forall i: int, j: int :: 0 <= i < idx && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold { var idx2: int := 0; while idx2 < idx && !res invariant 0 <= idx <= |numbers| invariant 0 <= idx2 <= idx invariant !res invariant forall j: int :: 0 <= j < idx2 ==> (if numbers[idx] - numbers[j] < 0.0 then numbers[j] - numbers[idx] else numbers[idx] - numbers[j]) >= threshold { var distance := (if numbers[idx2] - numbers[idx] < 0.0 then numbers[idx] - numbers[idx2] else numbers[idx2] - numbers[idx]); if distance < threshold { res := true; return; } idx2 := idx2 + 1; } idx := idx + 1; } }
24
insert
This insert method inserts elements from array nl into array line at the position at, shifting subsequent elements to the right. The length of line and nl before insertion are represented by l and p respectively. It mandates that 0 <= l + p <= line.Length, 0 <= p <= nl.Length, and 0 <= at <= l. The method modifies line such that for all i in 0 <= i < p, line[at + i] equals nl[i], and all other elements of line maintain their original values in the adjusted positions after the insertion.
method insert(line:array<char>, l:int, nl:array<char>, p:int, at:int) requires 0 <= l+p <= line.Length requires 0 <= p <= nl.Length requires 0 <= at <= l modifies line ensures forall i :: (0<=i<p) ==> line[at+i] == nl[i] ensures forall i :: (0<=i<at) ==> line[i] == old(line[i]) ensures forall i :: (at+p<=i<l+p) ==> line[i] == old(line[i-p])
method insert(line:array<char>, l:int, nl:array<char>, p:int, at:int) requires 0 <= l+p <= line.Length requires 0 <= p <= nl.Length requires 0 <= at <= l modifies line ensures forall i :: (0<=i<p) ==> line[at+i] == nl[i] ensures forall i :: (0<=i<at) ==> line[i] == old(line[i]) ensures forall i :: (at+p<=i<l+p) ==> line[i] == old(line[i-p]) { ghost var initialLine := line[..]; var i:int := l; while(i>at) invariant line[0..i] == initialLine[0..i] invariant line[i+p..l+p] == initialLine[i..l] invariant at<=i<=l { i := i - 1; line[i+p] := line[i]; } assert line[0..at] == initialLine[0..at]; assert line[at+p..l+p] == initialLine[at..l]; i := 0; while(i<p) invariant 0<=i<=p invariant line[0..at] == initialLine[0..at] invariant line[at..at+i] == nl[0..i] invariant line[at+p..l+p] == initialLine[at..l] { line[at + i] := nl[i]; i := i + 1; } assert line[0..at] == initialLine[0..at]; assert line[at..at+p] == nl[0..p]; assert line[at+p..l+p] == initialLine[at..l]; }
25
integer_square_root
Find the square root of a natural number.
method SquareRoot(N:nat) returns (r:nat) ensures r*r <= N < (r+1)*(r+1)
method SquareRoot(N:nat) returns (r:nat) ensures r*r <= N < (r+1)*(r+1) { r:=0; while (r+1)*(r+1)<=N invariant r*r<=N { r:=r+1; } }
26
is_even
Check if an integer is even. The integer can be either positive or negative or zero.
method ComputeIsEven(x:int) returns (is_even:bool) ensures (x % 2 == 0)==is_even
method ComputeIsEven(x:int) returns (is_even:bool) ensures (x % 2 == 0)==is_even { is_even:=false; if x%2==0{ is_even:=true; } }
27
is_palindrome
Given an seq<char> x, return true if x is a palindrome, and false otherwise.
method IsPalindrome(x: seq<char>) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |x| ==> x[i] == x[|x| - i - 1])
method IsPalindrome(x: seq<char>) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |x| ==> x[i] == x[|x| - i - 1]) { if |x|==0 { return true; } var i := 0; var j := |x| - 1; result := true; while (i < j) invariant 0<=i<=j+1 && 0<=j < |x| invariant i+j==|x|-1 invariant (forall k :: 0 <= k < i ==> x[k] == x[|x| - k - 1]) { if x[i] != x[j] { result := false; return; } i := i + 1; j := j - 1; } }
28
linear_search1
Linearly search for an element in a possibly empty array and return the index of its first appearance. Return the length of the array if not found.
method LinearSearch(a: array<int>, e: int) returns (n:int) ensures 0<=n<=a.Length ensures n==a.Length || a[n]==e ensures forall i::0<=i < n ==> e!=a[i]
method LinearSearch(a: array<int>, e: int) returns (n:int) ensures 0<=n<=a.Length ensures n==a.Length || a[n]==e ensures forall i::0<=i < n ==> e!=a[i] { n :=0; while n!=a.Length invariant 0<=n<=a.Length invariant forall i::0<=i<n ==> e!=a[i] { if e==a[n]{ return; } n:=n+1; } }
29
linear_search2
Linearly search for an element in a possibly empty array and return the index of its first appearance. Require that the input array contains the element. Ensure the returned index is the first appearance of the element.
method LinearSearch(a: array<int>, e: int) returns (n:int) requires exists i::0<=i<a.Length && a[i]==e ensures 0<=n<a.Length && a[n]==e ensures forall k :: 0 <= k < n ==> a[k]!=e
method LinearSearch(a: array<int>, e: int) returns (n:int) requires exists i::0<=i<a.Length && a[i]==e ensures 0<=n<a.Length && a[n]==e ensures forall k :: 0 <= k < n ==> a[k]!=e { n :=0; while n!=a.Length invariant 0<=n<=a.Length invariant forall i::0<=i<n ==> e!=a[i] { if e==a[n]{ return; } n:=n+1; } }
30
linear_search3
Linearly search for an existing element that satisfies a predicate in an array. Return the index of its first appearance. Require that the input array contains such an element. Ensure that no previous elements satisfy such predicate.
method LinearSearch3<T>(a: array<T>, P: T -> bool) returns (n: int) requires exists i :: 0 <= i < a.Length && P(a[i]) ensures 0 <= n < a.Length && P(a[n]) ensures forall k :: 0 <= k < n ==> !P(a[k])
method LinearSearch3<T>(a: array<T>, P: T -> bool) returns (n: int) requires exists i :: 0 <= i < a.Length && P(a[i]) ensures 0 <= n < a.Length && P(a[n]) ensures forall k :: 0 <= k < n ==> !P(a[k]) { n := 0; while true invariant 0 <= n < a.Length invariant exists i :: n <= i < a.Length && P(a[i]) invariant forall k :: 0 <= k < n ==> !P(a[k]) decreases a.Length - n { if P(a[n]) { return; } n := n + 1; } }
31
longest_prefix
This method returns the longest common prefix between two possibly empty sequences of characters. Ensure first that the prefix is shorter than two inputs, then ensure that it is equal to the first few chars of the inputs. Then ensure that it is the longest prefix, which means that either prefix is equal to either of the inputs, or the next character in inputs does not equal.
method LongestCommonPrefix(str1: seq<char>, str2: seq<char>) returns (prefix: seq<char>) ensures |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] ensures |prefix|==|str1| || |prefix|==|str2| || (str1[|prefix|]!=str2[|prefix|])
method LongestCommonPrefix(str1: seq<char>, str2: seq<char>) returns (prefix: seq<char>) ensures |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] ensures |prefix|==|str1| || |prefix|==|str2| || (str1[|prefix|]!=str2[|prefix|]) { prefix := []; var minLength := if |str1| <|str2| then |str1| else |str2|; for idx:= 0 to minLength invariant |prefix|==idx <= minLength<=|str1| && minLength<=|str2| invariant |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] { if str1[idx] != str2[idx] { return; } prefix := prefix + [str1[idx]]; } }
32
match
Input strings p and s are of equal length. Return true if, for every character in s, it matches the corresponding character in p or the character in p is a wildcard '?'.
method Match(s: string, p: string) returns (b: bool) requires |s| == |p| ensures b <==> forall n :: 0 <= n < |s| ==> s[n] == p[n] || p[n] == '?'
method Match(s: string, p: string) returns (b: bool) requires |s| == |p| ensures b <==> forall n :: 0 <= n < |s| ==> s[n] == p[n] || p[n] == '?' { var i := 0; while i < |s| invariant 0 <= i <= |s| invariant forall n :: 0 <= n < i ==> s[n] == p[n] || p[n] == '?' { if s[i] != p[i] && p[i] != '?' { return false; } i := i + 1; } return true; }
33
max_array
Returns the maximum value m present in the array a. Ensure that such an element appears in the array and is the maximum element.
method maxArray(a: array<int>) returns (m: int) requires a.Length >= 1 ensures forall k :: 0 <= k < a.Length ==> m >= a[k] ensures exists k :: 0 <= k < a.Length && m == a[k]
method maxArray(a: array<int>) returns (m: int) requires a.Length >= 1 ensures forall k :: 0 <= k < a.Length ==> m >= a[k] ensures exists k :: 0 <= k < a.Length && m == a[k] { m := a[0]; var index := 1; while (index < a.Length) invariant 0 <= index <= a.Length invariant forall k :: 0 <= k < index ==> m >= a[k] invariant exists k :: 0 <= k < index && m == a[k] decreases a.Length - index { m := if m>a[index] then m else a[index]; index := index + 1; } }
34
min_array
Return the value of the minimum element in a non-empty array. Ensure that such an element appears in the array and is the minimum element.
method minArray(a: array<int>) returns (r:int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> r <= a[i] ensures exists i :: 0 <= i < a.Length && r == a[i]
method minArray(a: array<int>) returns (r:int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> r <= a[i] ensures exists i :: 0 <= i < a.Length && r == a[i] { r:=a[0]; var i:=1; while i<a.Length invariant 0 <= i <= a.Length invariant forall x :: 0 <= x < i ==> r <= a[x] invariant exists x :: 0 <= x < i && r == a[x] { if r>a[i]{ r:=a[i]; } i:=i+1; } }
35
min_of_two
Return the min of two values.
method Min(x: int, y:int) returns (z: int) ensures x<=y ==> z==x ensures x>y ==> z==y
method Min(x: int, y:int) returns (z: int) ensures x<=y ==> z==x ensures x>y ==> z==y { if x < y { return x; } else { return y; } }
36
modify_2d_array
Modifies the value at one specified index of a 2D array of natural numbers. Require each inner array is unique. Ensure all first-order arraies is the same. Ensure that only 'arr[index1][index2]' is set to `val` and no other elements are changed.
method modify_array_element(arr: array<array<nat>>, index1: nat, index2: nat, val: nat) requires index1 < arr.Length requires index2 < arr[index1].Length requires forall i: nat, j:nat :: i < arr.Length && j < arr.Length && i != j ==> arr[i] != arr[j] modifies arr[index1] ensures forall i: nat :: 0 <= i < arr.Length ==> arr[i] == old(arr[i]) ensures forall i: nat, j: nat :: 0 <= i < arr.Length && 0 <= j < arr[i].Length && (i != index1 || j != index2) ==> arr[i][j] == old(arr[i][j]) ensures arr[index1][index2] == val
method modify_array_element(arr: array<array<nat>>, index1: nat, index2: nat, val: nat) requires index1 < arr.Length requires index2 < arr[index1].Length requires forall i: nat, j:nat :: i < arr.Length && j < arr.Length && i != j ==> arr[i] != arr[j] modifies arr[index1] ensures forall i: nat :: 0 <= i < arr.Length ==> arr[i] == old(arr[i]) ensures forall i: nat, j: nat :: 0 <= i < arr.Length && 0 <= j < arr[i].Length && (i != index1 || j != index2) ==> arr[i][j] == old(arr[i][j]) ensures arr[index1][index2] == val { arr[index1][index2] := val; }
37
multi_return
Return the sum and difference of two integers.
method MultipleReturns(x: int, y: int) returns (more: int, less: int) ensures more == x+y ensures less == x-y
method MultipleReturns(x: int, y: int) returns (more: int, less: int) ensures more == x+y ensures less == x-y { more := x + y; less := x - y; }
38
online_max
Require that the input array to be non-empty and x is an non-zero index into the array. Return the index of the first element that is strictly larger than m, the maximum element in the first x elements, or return the last index. Ensure the returned index is larger than or equal to x. Ensure the ghost variable represents the largest element in the first x elements of the array (DO NOT use max).
method onlineMax(a: array<int>, x: int) returns (ghost m:int, p:int) requires 1<=x<a.Length requires a.Length!=0 ensures x<=p<a.Length ensures forall i::0<=i<x==> a[i]<=m ensures exists i::0<=i<x && a[i]==m ensures x<=p<a.Length-1 ==> (forall i::0<=i<p ==> a[i]<a[p]) ensures (forall i::x<=i<a.Length && a[i]<=m) ==> p==a.Length-1
method onlineMax(a: array<int>, x: int) returns (ghost m:int, p:int) requires 1<=x<a.Length requires a.Length!=0 ensures x<=p<a.Length ensures forall i::0<=i<x==> a[i]<=m ensures exists i::0<=i<x && a[i]==m ensures x<=p<a.Length-1 ==> (forall i::0<=i<p ==> a[i]<a[p]) ensures (forall i::x<=i<a.Length && a[i]<=m) ==> p==a.Length-1 { p:= 0; var best := a[0]; var i:=1; while i<x invariant 0<=i<=x invariant forall j::0<=j<i==> a[j]<=best invariant exists j::0<=j<i && a[j]==best { if a[i]>best{ best:=a[i]; } i:=i+1; } m:=best; i:=x; while i<a.Length invariant x<=i<=a.Length invariant forall j::x<=j<i ==> a[j]<=m { if a[i]>best{ p:=i; return; } i:=i+1; } p:=a.Length-1; }
39
only_once
Determines whether key appears exactly once in the array a.
method only_once<T(==)>(a: array<T>, key: T) returns (b:bool) ensures (multiset(a[..])[key] ==1 ) <==> b
method only_once<T(==)>(a: array<T>, key: T) returns (b:bool) ensures (multiset(a[..])[key] ==1 ) <==> b { var i := 0; b := false; var keyCount := 0; while i < a.Length invariant 0 <= i <= a.Length invariant multiset(a[..i])[key] == keyCount invariant b <==> (keyCount == 1) { if (a[i] == key) { keyCount := keyCount + 1; } if (keyCount == 1) { b := true; } else { b := false; } i := i + 1; } assert a[..a.Length] == a[..]; }
40
quotient
Find the quotient and remainder of a division of a dividsor and a dividend. Require the dividend to be non-zero. Ensure that the divisor equals to quotient times dividend plus remainder. Ensure that the quotient and remainder are positive. Ensure the remainder less than th dividend.
method Quotient(x: nat, y:nat) returns (r:int, q:int) requires y != 0 ensures q * y + r == x && 0 <= r < y && 0 <= q
method Quotient(x: nat, y:nat) returns (r:int, q:int) requires y != 0 ensures q * y + r == x && 0 <= r < y && 0 <= q { r:=x; q:=0; while y<=r invariant q*y+r==x && r>=0 decreases r { r:=r-y; q:=q+1; } }
41
remove_front
Removes the front element from the array a and returns the resulting array c.
method remove_front(a:array<int>) returns (c:array<int>) requires a.Length>0 ensures a[1..] == c[..]
method remove_front(a:array<int>) returns (c:array<int>) requires a.Length>0 ensures a[1..] == c[..] { c := new int[a.Length-1]; var i:= 1; while (i < a.Length) invariant 1 <= i <= a.Length invariant forall ii::1<=ii<i ==> c[ii-1]==a[ii] { c[i-1] := a[i]; i:=i+1; } }
42
replace
Replace all elements in the old array strictly greater than k with -1. Elements in the old array less than or equal to k remains unchanged. Use twostate specifiation. Distinguish old(arr) and arr.
method replace(arr: array<int>, k: int) modifies arr ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) > k ==> arr[i] == -1 ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) <= k ==> arr[i] == old(arr[i])
method replace(arr: array<int>, k: int) modifies arr ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) > k ==> arr[i] == -1 ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) <= k ==> arr[i] == old(arr[i]) { var i := 0; while i < arr.Length decreases arr.Length - i invariant 0 <= i <= arr.Length invariant forall j :: 0 <= j < i ==> old(arr[j]) > k ==> arr[j] == -1 invariant forall j :: 0 <= j < i ==> old(arr[j]) <= k ==> arr[j] == old(arr[j]) invariant forall j :: i <= j < arr.Length ==> old(arr[j]) == arr[j] { if arr[i] > k { arr[i] := -1; } i := i + 1; } }
43
return_seven
Return integer 7 regardless of input.
method M(x: int) returns (seven: int) ensures seven==7
method M(x: int) returns (seven: int) ensures seven==7 { seven := 7; }
44
reverse
This method reverses the provided integer array `a` in-place.
method reverse(a: array<int>) modifies a ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[a.Length - 1 - i])
method reverse(a: array<int>) modifies a ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[a.Length - 1 - i]) { var i := 0; while i <a.Length / 2 invariant 0 <= i <= a.Length/2 invariant forall k :: 0 <= k < i || a.Length-1-i < k <= a.Length-1 ==> a[k] == old(a[a.Length-1-k]) invariant forall k :: i <= k <= a.Length-1-i ==> a[k] == old(a[k]) { a[i], a[a.Length-1-i] := a[a.Length-1-i], a[i]; i := i + 1; } }
45
rotate
Rotate the array by the offset to the left.
method rotate(a: array<int>, offset:int) returns (b: array<int> ) requires 0<=offset ensures b.Length==a.Length ensures forall i::0<=i<a.Length ==> b[i]==a[(i+offset)%a.Length]
method rotate(a: array<int>, offset:int) returns (b: array<int> ) requires 0<=offset ensures b.Length==a.Length ensures forall i::0<=i<a.Length ==> b[i]==a[(i+offset)%a.Length] { b:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j ::0<=j<i ==> b[j]==a[(j+offset)%a.Length] { b[i]:=a[(i+offset)%a.Length]; i:=i+1; } }
46
selectionsort
Use selection sort to sort a possibly empty array. Ensure that all elements remain the same.
method SelectionSort(a: array<int>) modifies a ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..]) == old(multiset(a[..]))
method SelectionSort(a: array<int>) modifies a ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..]) == old(multiset(a[..])) { var n:= 0; while n != a.Length invariant 0 <= n <= a.Length invariant forall i, j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j] invariant forall i,j :: 0 <= i < j < n ==> a[i] <= a[j] invariant multiset(a[..]) == old(multiset(a[..])) { var mindex, m := n, n+1; while m != a.Length invariant n <= mindex < m <= a.Length invariant forall i :: n <= i < m ==> a[mindex] <= a[i] { if a[m] < a[mindex] { mindex := m; } m := m+1; } a[n], a[mindex] := a[mindex], a[n]; n := n+1; } }
47
seq_to_array
Convert a sequence into an array in the original order.
method ToArray<T>(xs: seq<T>) returns (a: array<T>) ensures fresh(a) ensures a.Length == |xs| ensures forall i :: 0 <= i < |xs| ==> a[i] == xs[i]
method ToArray<T>(xs: seq<T>) returns (a: array<T>) ensures fresh(a) ensures a.Length == |xs| ensures forall i :: 0 <= i < |xs| ==> a[i] == xs[i] { a := new T[|xs|](i requires 0 <= i < |xs| => xs[i]); }
48
set_to_seq
Convert a set into a seq. Ensure that the set contains the same set of elements as the seq.
method SetToSeq<T>(s: set<T>) returns (xs: seq<T>) ensures multiset(s) == multiset(xs)
method SetToSeq<T>(s: set<T>) returns (xs: seq<T>) ensures multiset(s) == multiset(xs) { xs := []; var left: set<T> := s; while left != {} invariant multiset(left) + multiset(xs) == multiset(s) { var x :| x in left; left := left - {x}; xs := xs + [x]; } }
49
slope_search
Search for the index of an existing key in a slope represented by an 2-D array. Require the slope to be a plane whose height is non-decreasing on the same x-axis (horizontal line) or same y-axis (vertical line). Require that such an element exists.
method SlopeSearch(a: array2<int>, key: int) returns (m:int, n:int) requires forall i,j,j'::0<=i<a.Length0 && 0<=j<j'<a.Length1 ==> a[i,j]<=a[i,j'] requires forall i,i',j::0<=i<i'<a.Length0 && 0<=j<a.Length1 ==> a[i,j]<=a[i',j] requires exists i,j :: 0<=i<a.Length0 && 0<=j<a.Length1 && a[i,j]==key ensures 0<=m<a.Length0 && 0<=n<a.Length1 ensures a[m,n]==key
method SlopeSearch(a: array2<int>, key: int) returns (m:int, n:int) requires forall i,j,j'::0<=i<a.Length0 && 0<=j<j'<a.Length1 ==> a[i,j]<=a[i,j'] requires forall i,i',j::0<=i<i'<a.Length0 && 0<=j<a.Length1 ==> a[i,j]<=a[i',j] requires exists i,j :: 0<=i<a.Length0 && 0<=j<a.Length1 && a[i,j]==key ensures 0<=m<a.Length0 && 0<=n<a.Length1 ensures a[m,n]==key { m,n:=0, a.Length1-1; while a[m,n] !=key invariant 0<=m<a.Length0 && 0<=n<a.Length1 invariant exists i,j :: m<=i<a.Length0 && 0<=j<=n && a[i,j]==key decreases a.Length0-m+n { if a[m,n] < key { m:=m+1; }else{ n:=n-1; } } }
50
swap
Swap two integers.
method Swap(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X
method Swap(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X { x, y := X, Y; var tmp := x; x := y; y := tmp; assert x == Y && y == X; }
51
swap_arith
Swap two integers. There are no restrictions on the inputs.
method SwapArithmetic(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X
method SwapArithmetic(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X { x, y := X, Y; x := y - x; y := y - x; x := y + x; }
52
swap_bitvector
Swap two bitvectors.
method SwapBitvectors(X: bv8, Y: bv8) returns(x: bv8, y: bv8) ensures x==Y ensures y==X
method SwapBitvectors(X: bv8, Y: bv8) returns(x: bv8, y: bv8) ensures x==Y ensures y==X { x, y := X, Y; x := x ^ y; y := x ^ y; x := x ^ y; }
53
swap_in_array
Swaps the elements at indices i and j in the array arr and make sure no other elements change.
method swap(arr: array<int>, i: int, j: int) requires 0 <= i < arr.Length && 0 <= j < arr.Length modifies arr ensures arr[i] == old(arr[j]) && arr[j] == old(arr[i]) ensures forall k :: 0 <= k < arr.Length && k != i && k != j ==> arr[k] == old(arr[k])
method swap(arr: array<int>, i: int, j: int) requires 0 <= i < arr.Length && 0 <= j < arr.Length modifies arr ensures arr[i] == old(arr[j]) && arr[j] == old(arr[i]) ensures forall k :: 0 <= k < arr.Length && k != i && k != j ==> arr[k] == old(arr[k]) { var tmp := arr[i]; arr[i] := arr[j]; arr[j] := tmp; }
54
swap_sim
Simultaneously swaps the values of X and Y and returns the swapped values as x and y.
method SwapSimultaneous(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X
method SwapSimultaneous(X: int, Y: int) returns(x: int, y: int) ensures x==Y ensures y==X { x, y := X, Y; x, y := y, x; }
55
test_array
Test an array assignment operation. Index j is within range of array. Assign index j to be 60. All other elements remain unchanged.
method TestArrayElements(a:array<int>, j: nat) requires 0<=j < a.Length modifies a ensures a[j] == 60 ensures forall k :: 0 <= k < a.Length && k != j ==> a[k] == old(a[k])
method TestArrayElements(a:array<int>, j: nat) requires 0<=j < a.Length modifies a ensures a[j] == 60 ensures forall k :: 0 <= k < a.Length && k != j ==> a[k] == old(a[k]) { a[j] := 60; }
56
triple
Triple the input.
method Triple (x:int) returns (r:int) ensures r==3*x
method Triple (x:int) returns (r:int) ensures r==3*x { r:= x*3; }
57
triple2
Triple the input. There are no restrictions on the input.
method Triple (x:int) returns (r:int) ensures r==3*x
method Triple (x:int) returns (r:int) ensures r==3*x { if { case x<18 => var a,b := 2*x, 4*x; r:=(a+b)/2; case 0<=x => var y:=2*x; r:= x+y; } }
58
two_sum
Given an array of integers nums and an integer target, return the first pair of indices i < j of the two numbers such that they add up to target. Require that such pair (i , j) exist in the array. Ensure for all i less than returned i and for all j, that no other i, j exists. Ensure for all j between returned i j, no other j exist.
method twoSum(nums: array<int>, target: int) returns (i: int, j: int) requires nums.Length > 1 requires exists i,j::0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures 0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures forall ii,jj:: (0 <= ii < i && ii < jj < nums.Length) ==> nums[ii] + nums[jj] != target ensures forall jj:: i < jj < j ==> nums[i] + nums[jj] != target
method twoSum(nums: array<int>, target: int) returns (i: int, j: int) requires nums.Length > 1 requires exists i,j::0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures 0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures forall ii,jj:: (0 <= ii < i && ii < jj < nums.Length) ==> nums[ii] + nums[jj] != target ensures forall jj:: i < jj < j ==> nums[i] + nums[jj] != target { var n := nums.Length; i := 0; j := 1; while i < n - 1 invariant 0 <= i < j <= n invariant forall ii, jj :: 0 <= ii < i && ii < jj < n ==> nums[ii] + nums[jj] != target { j := i + 1; while j < n invariant 0 <= i < j <= n invariant forall jj :: i < jj < j ==> nums[i] + nums[jj] != target { if nums[i] + nums[j] == target { return; } j := j + 1; } i := i + 1; } }
59
update_array
Verify some array assignment operations. Index 7 is assigned to 516. Index 4 increments by 3. All other elements stay the same. The array is at least 8 in length.
method UpdateElements(a: array<int>) requires a.Length >= 8 modifies a ensures old(a[4]) +3 == a[4] ensures a[7]==516 ensures forall i::0 <= i<a.Length ==> i != 7 && i != 4 ==> a[i] == old(a[i])
method UpdateElements(a: array<int>) requires a.Length >= 8 modifies a ensures old(a[4]) +3 == a[4] ensures a[7]==516 ensures forall i::0 <= i<a.Length ==> i != 7 && i != 4 ==> a[i] == old(a[i]) { a[4] := a[4] + 3; a[7] := 516; }
60
update_map
Merges two maps m1 and m2, where keys present in m2 take precedence over m1. Ensure no new elements appear.
method update_map<K(!new), V>(m1: map<K, V>, m2: map<K, V>) returns (r: map<K, V>) ensures (forall k :: k in m2 ==> k in r) ensures (forall k :: k in m1 ==> k in r) ensures (forall k :: k in m2 ==> r[k] == m2[k]) ensures (forall k :: !(k in m2) && k in m1 ==> r[k] == m1[k]) ensures (forall k :: !(k in m2) && !(k in m1) ==> !(k in r))
method update_map<K(!new), V>(m1: map<K, V>, m2: map<K, V>) returns (r: map<K, V>) ensures (forall k :: k in m2 ==> k in r) ensures (forall k :: k in m1 ==> k in r) ensures (forall k :: k in m2 ==> r[k] == m2[k]) ensures (forall k :: !(k in m2) && k in m1 ==> r[k] == m1[k]) ensures (forall k :: !(k in m2) && !(k in m1) ==> !(k in r)) { r:= map k | k in (m1.Keys + m2.Keys) :: if k in m2 then m2[k] else m1[k]; }
README.md exists but content is empty.
Downloads last month
10