Dataset Viewer
Auto-converted to Parquet
id
stringlengths
3
3
name
stringlengths
3
3
docstring
stringlengths
18
18
code
stringlengths
129
20.6k
ground_truth
stringlengths
148
21.8k
test_file
stringlengths
15
119
000
000
Dafny program: 000
function sorted(a: array<int>) : bool reads a { forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j] } method BinarySearch(a: array<int>, x: int) returns (index: int) requires sorted(a) ensures 0 <= index < a.Length ==> a[index] == x ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[i] != x { var low := 0; var high := a.Length - 1; var mid := 0; while (low <= high) { mid := (high + low) / 2; if a[mid] < x { low := mid + 1; } else if a[mid] > x { high := mid - 1; } else { return mid; } } return -1; }
function sorted(a: array<int>) : bool reads a { forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j] } method BinarySearch(a: array<int>, x: int) returns (index: int) requires sorted(a) ensures 0 <= index < a.Length ==> a[index] == x ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[i] != x { var low := 0; var high := a.Length - 1; var mid := 0; while (low <= high) invariant 0 <= low <= high + 1 <= a.Length invariant x !in a[..low] && x !in a[high + 1..] { mid := (high + low) / 2; if a[mid] < x { low := mid + 1; } else if a[mid] > x { high := mid - 1; } else { return mid; } } return -1; }
630-dafny_tmp_tmpz2kokaiq_Solution.dfy
003
003
Dafny program: 003
// Noa Leron 207131871 // Tsuri Farhana 315016907 // definitions borrowed from Rustan Leino's Program Proofs Chapter 7 // (https://program-proofs.com/code.html example code in Dafny; source file 7-Unary.dfy) datatype Unary = Zero | Suc(pred: Unary) ghost function UnaryToNat(x: Unary): nat { match x case Zero => 0 case Suc(x') => 1 + UnaryToNat(x') } ghost function NatToUnary(n: nat): Unary { if n == 0 then Zero else Suc(NatToUnary(n-1)) } lemma NatUnaryCorrespondence(n: nat, x: Unary) ensures UnaryToNat(NatToUnary(n)) == n ensures NatToUnary(UnaryToNat(x)) == x { } predicate Less(x: Unary, y: Unary) { y != Zero && (x.Suc? ==> Less(x.pred, y.pred)) } predicate LessAlt(x: Unary, y: Unary) { y != Zero && (x == Zero || Less(x.pred, y.pred)) } lemma LessSame(x: Unary, y: Unary) ensures Less(x, y) == LessAlt(x, y) { } lemma LessCorrect(x: Unary, y: Unary) ensures Less(x, y) <==> UnaryToNat(x) < UnaryToNat(y) { } lemma LessTransitive(x: Unary, y: Unary, z: Unary) requires Less(x, y) && Less(y, z) ensures Less(x, z) { } function Add(x: Unary, y: Unary): Unary { match y case Zero => x case Suc(y') => Suc(Add(x, y')) } lemma {:induction false} SucAdd(x: Unary, y: Unary) ensures Suc(Add(x, y)) == Add(Suc(x), y) { match y case Zero => case Suc(y') => calc { Suc(Add(x, Suc(y'))); == // def. Add Suc(Suc(Add(x, y'))); == { SucAdd(x, y'); } Suc(Add(Suc(x), y')); == // def. Add Add(Suc(x), Suc(y')); } } lemma {:induction false} AddZero(x: Unary) ensures Add(Zero, x) == x { match x case Zero => case Suc(x') => calc { Add(Zero, Suc(x')); == // def. Add Suc(Add(Zero, x')); == { AddZero(x'); } Suc(x'); } } function Sub(x: Unary, y: Unary): Unary requires !Less(x, y) { match y case Zero => x case Suc(y') => Sub(x.pred, y') } function Mul(x: Unary, y: Unary): Unary { match x case Zero => Zero case Suc(x') => Add(Mul(x', y), y) } lemma SubStructurallySmaller(x: Unary, y: Unary) requires !Less(x, y) && y != Zero ensures Sub(x, y) < x { } lemma AddSub(x: Unary, y: Unary) requires !Less(x, y) ensures Add(Sub(x, y), y) == x { } /* Goal: implement correcly and clearly, using iterative code (no recursion), documenting the proof obligations as we've learned, with assertions and a lemma for each proof goal - DO NOT modify the specification or any of the definitions given in this file - Not all definitions above are relevant, some are simply included as examples - Feel free to use existing non-ghost functions/predicates in your code, and existing lemmas (for the proof) in your annotations - New functions/predicates may be added ONLY as ghost - If it helps you in any way, a recursive implementation + proof can be found in the book and the downloadable source file [https://program-proofs.com/code.html example code in Dafny, source file 7-Unary.dfy] */ method{:verify false} IterativeDivMod'(x: Unary, y: Unary) returns (d: Unary, m: Unary) requires y != Zero ensures Add(Mul(d, y), m) == x && Less(m, y) { if (Less(x, y)) { d := Zero; m := x; } else{ var x0: Unary := x; d := Zero; while (!Less(x0, y)) { d := Suc(d); x0 := Sub(x0, y); } m := x0; } } method IterativeDivMod(x: Unary, y: Unary) returns (d: Unary, m: Unary) requires y != Zero ensures Add(Mul(d, y), m) == x && Less(m, y) { if (Less(x, y)) { AddZero(x); d := Zero; m := x; } else{ var x0: Unary := x; d := Zero; AddZero(x); while (!Less(x0, y)) { AddMulSucSubEqAddMul(d, y , x0); d := Suc(d); SubStructurallySmaller(x0, y); x0 := Sub(x0, y); } m := x0; } } lemma AddMulEqMulSuc(a: Unary, b: Unary) ensures Mul(Suc(a), b) == Add(Mul(a, b), b) { calc{ Mul(Suc(a), b); == // def. Mul Add(Mul(a, b), b); } } lemma AddMulSucSubEqAddMul(d: Unary, y: Unary, x0: Unary) requires !Less(x0, y) requires y != Zero ensures Add(Mul(Suc(d), y), Sub(x0, y)) == Add(Mul(d, y), x0) { calc{ Add(Mul(Suc(d), y), Sub(x0, y)); == {AddMulEqMulSuc(d, y); Add(Add(Mul(d, y), y), Sub(x0, y)); == {AddTransitive(Mul(d, y), y, Sub(x0, y)); Add(Mul(d, y), Add(y, Sub(x0, y))); == {AddCommutative(Sub(x0, y), y); Add(Mul(d, y), Add(Sub(x0, y), y)); == {assert !Less(x0, y); AddSub(x0, y); Add(Mul(d, y), x0); } } lemma AddTransitive(a: Unary, b: Unary, c: Unary) ensures Add(a, Add(b, c)) == Add(Add(a, b), c) {//These assertions are only for documanting the proof obligations match c case Zero => calc{ Add(a, Add(b, c)); == Add(a, Add(b, Zero)); == // def. Add Add(a, b); == // def. Add Add(Add(a,b), Zero); == Add(Add(a,b), c); } case Suc(c') => match b case Zero => calc{ Add(a, Add(b, c)); == Add(a, Add(Zero, Suc(c'))); == {AddZero(Suc(c')); Add(a, Suc(c')); == // def. Add Add(Add(a, Zero), Suc(c')); == Add(Add(a, b), Suc(c')); == Add(Add(a,b), c); } case Suc(b') => match a case Zero => calc{ Add(a, Add(b, c)); == Add(Zero, Add(Suc(b'), Suc(c'))); == {AddZero(Add(Suc(b'), Suc(c'))); Add(Suc(b'), Suc(c')); == {AddZero(Suc(b')); Add(Add(Zero, Suc(b')), Suc(c')); == Add(Add(a, b), c); } case Suc(a') => calc{ Add(a, Add(b, c)); == Add(Suc(a'), Add(Suc(b'), Suc(c'))); == // def. Add Add(Suc(a'), Suc(Add(Suc(b'), c'))); == // def. Add Suc(Add(Suc(a'), Add(Suc(b'), c'))); == {SucAdd(a', Add(Suc(b'), c')); Suc(Suc(Add(a', Add(Suc(b'), c')))); == {SucAdd(b', c'); Suc(Suc(Add(a', Suc(Add(b', c'))))); == // def. Add Suc(Suc(Suc(Add(a', Add(b', c'))))); == {AddTransitive(a', b', c'); Suc(Suc(Suc(Add(Add(a',b'), c')))); == // def. Add Suc(Suc(Add(Add(a', b'), Suc(c')))); == {SucAdd(Add(a', b'), Suc(c')); Suc(Add(Suc(Add(a', b')), Suc(c'))); == {SucAdd(a', b'); Suc(Add(Add(Suc(a'), b'), Suc(c'))); == {SucAdd(Add(Suc(a'), b'), Suc(c')); Add(Suc(Add(Suc(a'), b')), Suc(c')); == // def. Add Add(Add(Suc(a'), Suc(b')), Suc(c')); == Add(Add(a,b), c); } } lemma AddCommutative(a: Unary, b: Unary) ensures Add(a, b) == Add(b, a) { match b case Zero => calc{ Add(a, b); == Add(a, Zero); == // def. Add a; == {AddZero(a); Add(Zero, a); == Add(b, a); } case Suc(b') => calc{ Add(a, b); == Add(a, Suc(b')); == // def. Add Suc(Add(a, b')); == {AddCommutative(a, b'); Suc(Add(b', a)); == {SucAdd(b', a); Add(Suc(b'), a); == Add(b, a); } } method Main() { var U3 := Suc(Suc(Suc(Zero))); var U7 := Suc(Suc(Suc(Suc(U3)))); var d, m := IterativeDivMod(U7, U3); print "Just as 7 divided by 3 is 2 with a remainder of 1, IterativeDivMod(", U7, ", ", U3, ") is ", d, " with a remainder of ", m; }
// Noa Leron 207131871 // Tsuri Farhana 315016907 // definitions borrowed from Rustan Leino's Program Proofs Chapter 7 // (https://program-proofs.com/code.html example code in Dafny; source file 7-Unary.dfy) datatype Unary = Zero | Suc(pred: Unary) ghost function UnaryToNat(x: Unary): nat { match x case Zero => 0 case Suc(x') => 1 + UnaryToNat(x') } ghost function NatToUnary(n: nat): Unary { if n == 0 then Zero else Suc(NatToUnary(n-1)) } lemma NatUnaryCorrespondence(n: nat, x: Unary) ensures UnaryToNat(NatToUnary(n)) == n ensures NatToUnary(UnaryToNat(x)) == x { } predicate Less(x: Unary, y: Unary) { y != Zero && (x.Suc? ==> Less(x.pred, y.pred)) } predicate LessAlt(x: Unary, y: Unary) { y != Zero && (x == Zero || Less(x.pred, y.pred)) } lemma LessSame(x: Unary, y: Unary) ensures Less(x, y) == LessAlt(x, y) { } lemma LessCorrect(x: Unary, y: Unary) ensures Less(x, y) <==> UnaryToNat(x) < UnaryToNat(y) { } lemma LessTransitive(x: Unary, y: Unary, z: Unary) requires Less(x, y) && Less(y, z) ensures Less(x, z) { } function Add(x: Unary, y: Unary): Unary { match y case Zero => x case Suc(y') => Suc(Add(x, y')) } lemma {:induction false} SucAdd(x: Unary, y: Unary) ensures Suc(Add(x, y)) == Add(Suc(x), y) { match y case Zero => case Suc(y') => calc { Suc(Add(x, Suc(y'))); == // def. Add Suc(Suc(Add(x, y'))); == { SucAdd(x, y'); } Suc(Add(Suc(x), y')); == // def. Add Add(Suc(x), Suc(y')); } } lemma {:induction false} AddZero(x: Unary) ensures Add(Zero, x) == x { match x case Zero => case Suc(x') => calc { Add(Zero, Suc(x')); == // def. Add Suc(Add(Zero, x')); == { AddZero(x'); } Suc(x'); } } function Sub(x: Unary, y: Unary): Unary requires !Less(x, y) { match y case Zero => x case Suc(y') => Sub(x.pred, y') } function Mul(x: Unary, y: Unary): Unary { match x case Zero => Zero case Suc(x') => Add(Mul(x', y), y) } lemma SubStructurallySmaller(x: Unary, y: Unary) requires !Less(x, y) && y != Zero ensures Sub(x, y) < x { } lemma AddSub(x: Unary, y: Unary) requires !Less(x, y) ensures Add(Sub(x, y), y) == x { } /* Goal: implement correcly and clearly, using iterative code (no recursion), documenting the proof obligations as we've learned, with assertions and a lemma for each proof goal - DO NOT modify the specification or any of the definitions given in this file - Not all definitions above are relevant, some are simply included as examples - Feel free to use existing non-ghost functions/predicates in your code, and existing lemmas (for the proof) in your annotations - New functions/predicates may be added ONLY as ghost - If it helps you in any way, a recursive implementation + proof can be found in the book and the downloadable source file [https://program-proofs.com/code.html example code in Dafny, source file 7-Unary.dfy] */ method{:verify false} IterativeDivMod'(x: Unary, y: Unary) returns (d: Unary, m: Unary) requires y != Zero ensures Add(Mul(d, y), m) == x && Less(m, y) { if (Less(x, y)) { d := Zero; m := x; } else{ var x0: Unary := x; d := Zero; while (!Less(x0, y)) invariant Add(Mul(d, y), x0) == x decreases x0 { d := Suc(d); x0 := Sub(x0, y); } m := x0; } } method IterativeDivMod(x: Unary, y: Unary) returns (d: Unary, m: Unary) requires y != Zero ensures Add(Mul(d, y), m) == x && Less(m, y) { if (Less(x, y)) { assert Less(x, y); AddZero(x); assert Add(Zero, x) == x; assert Mul(Zero, y) == Zero; assert Add(Mul(Zero, y), x) == x; d := Zero; m := x; assert Add(Mul(d, y), m) == m; assert Less(m, y); assert Add(Mul(d, y), m) == x && Less(m, y); } else{ assert !Less(x, y); assert y != Zero; var x0: Unary := x; assert Mul(Zero, y) == Zero; d := Zero; assert Mul(d, y) == Zero; AddZero(x); assert Add(Zero, x) == x; assert Add(Mul(d, y), x) == x; assert Add(Mul(d, y), x0) == x; while (!Less(x0, y)) invariant Add(Mul(d, y), x0) == x decreases x0 { assert Add(Mul(d, y), x0) == x; assert !Less(x0, y); assert y != Zero; AddMulSucSubEqAddMul(d, y , x0); assert Add(Mul(Suc(d), y), Sub(x0, y)) == Add(Mul(d, y), x0); assert Add(Mul(Suc(d), y), Sub(x0, y)) == x; d := Suc(d); assert !Less(x0, y) && y != Zero; SubStructurallySmaller(x0, y); assert Sub(x0, y) < x0; // decreases x0 := Sub(x0, y); assert Add(Mul(d, y), x0) == x; } assert Add(Mul(d, y), x0) == x; m := x0; assert Add(Mul(d, y), m) == x; } assert Add(Mul(d, y), m) == x; } lemma AddMulEqMulSuc(a: Unary, b: Unary) ensures Mul(Suc(a), b) == Add(Mul(a, b), b) { calc{ Mul(Suc(a), b); == // def. Mul Add(Mul(a, b), b); } } lemma AddMulSucSubEqAddMul(d: Unary, y: Unary, x0: Unary) requires !Less(x0, y) requires y != Zero ensures Add(Mul(Suc(d), y), Sub(x0, y)) == Add(Mul(d, y), x0) { calc{ Add(Mul(Suc(d), y), Sub(x0, y)); == {AddMulEqMulSuc(d, y); assert Mul(Suc(d), y) == Add(Mul(d, y), y);} Add(Add(Mul(d, y), y), Sub(x0, y)); == {AddTransitive(Mul(d, y), y, Sub(x0, y)); assert Add(Mul(d, y), Add(y, Sub(x0, y))) == Add(Add(Mul(d, y), y), Sub(x0, y));} Add(Mul(d, y), Add(y, Sub(x0, y))); == {AddCommutative(Sub(x0, y), y); assert Add(Sub(x0, y), y) == Add(y, Sub(x0, y));} Add(Mul(d, y), Add(Sub(x0, y), y)); == {assert !Less(x0, y); AddSub(x0, y); assert Add(Sub(x0, y), y) == x0;} Add(Mul(d, y), x0); } } lemma AddTransitive(a: Unary, b: Unary, c: Unary) ensures Add(a, Add(b, c)) == Add(Add(a, b), c) {//These assertions are only for documanting the proof obligations match c case Zero => calc{ Add(a, Add(b, c)); == Add(a, Add(b, Zero)); == // def. Add Add(a, b); == // def. Add Add(Add(a,b), Zero); == Add(Add(a,b), c); } case Suc(c') => match b case Zero => calc{ Add(a, Add(b, c)); == Add(a, Add(Zero, Suc(c'))); == {AddZero(Suc(c')); assert Add(Zero, Suc(c')) == Suc(c');} Add(a, Suc(c')); == // def. Add Add(Add(a, Zero), Suc(c')); == Add(Add(a, b), Suc(c')); == Add(Add(a,b), c); } case Suc(b') => match a case Zero => calc{ Add(a, Add(b, c)); == Add(Zero, Add(Suc(b'), Suc(c'))); == {AddZero(Add(Suc(b'), Suc(c'))); assert Add(Zero, Add(Suc(b'), Suc(c'))) == Add(Suc(b'), Suc(c'));} Add(Suc(b'), Suc(c')); == {AddZero(Suc(b')); assert Add(Zero , Suc(b')) == Suc(b');} Add(Add(Zero, Suc(b')), Suc(c')); == Add(Add(a, b), c); } case Suc(a') => calc{ Add(a, Add(b, c)); == Add(Suc(a'), Add(Suc(b'), Suc(c'))); == // def. Add Add(Suc(a'), Suc(Add(Suc(b'), c'))); == // def. Add Suc(Add(Suc(a'), Add(Suc(b'), c'))); == {SucAdd(a', Add(Suc(b'), c')); assert Suc(Add(a', Add(Suc(b'), c'))) == Add(Suc(a'), Add(Suc(b'), c'));} Suc(Suc(Add(a', Add(Suc(b'), c')))); == {SucAdd(b', c'); assert Suc(Add(b', c')) == Add(Suc(b'), c');} Suc(Suc(Add(a', Suc(Add(b', c'))))); == // def. Add Suc(Suc(Suc(Add(a', Add(b', c'))))); == {AddTransitive(a', b', c'); assert Add(a', Add(b',c')) == Add(Add(a',b'),c');} Suc(Suc(Suc(Add(Add(a',b'), c')))); == // def. Add Suc(Suc(Add(Add(a', b'), Suc(c')))); == {SucAdd(Add(a', b'), Suc(c')); assert Suc(Add(Add(a', b'), Suc(c'))) == Add(Suc(Add(a', b')), Suc(c'));} Suc(Add(Suc(Add(a', b')), Suc(c'))); == {SucAdd(a', b'); assert Suc(Add(a', b')) == Add(Suc(a'), b');} Suc(Add(Add(Suc(a'), b'), Suc(c'))); == {SucAdd(Add(Suc(a'), b'), Suc(c')); assert Suc(Add(Add(Suc(a'), b'), Suc(c'))) == Add(Suc(Add(Suc(a'), b')), Suc(c'));} Add(Suc(Add(Suc(a'), b')), Suc(c')); == // def. Add Add(Add(Suc(a'), Suc(b')), Suc(c')); == Add(Add(a,b), c); } } lemma AddCommutative(a: Unary, b: Unary) ensures Add(a, b) == Add(b, a) { match b case Zero => calc{ Add(a, b); == Add(a, Zero); == // def. Add a; == {AddZero(a); assert Add(Zero, a) == a;} Add(Zero, a); == Add(b, a); } case Suc(b') => calc{ Add(a, b); == Add(a, Suc(b')); == // def. Add Suc(Add(a, b')); == {AddCommutative(a, b'); assert Add(a, b') == Add(b', a);} Suc(Add(b', a)); == {SucAdd(b', a); assert Suc(Add(b',a)) == Add(Suc(b'),a);} Add(Suc(b'), a); == Add(b, a); } } method Main() { var U3 := Suc(Suc(Suc(Zero))); assert UnaryToNat(U3) == 3; var U7 := Suc(Suc(Suc(Suc(U3)))); assert UnaryToNat(U7) == 7; var d, m := IterativeDivMod(U7, U3); assert Add(Mul(d, U3), m) == U7 && Less(m, U3); print "Just as 7 divided by 3 is 2 with a remainder of 1, IterativeDivMod(", U7, ", ", U3, ") is ", d, " with a remainder of ", m; }
AssertivePrograming_tmp_tmpwf43uz0e_DivMode_Unary.dfy
004
004
Dafny program: 004
// Noa Leron 207131871 // Tsuri Farhana 315016907 ghost predicate ExistsSubstring(str1: string, str2: string) { // string in Dafny is a sequence of characters (seq<char>) and <= on sequences is the prefix relation exists offset :: 0 <= offset <= |str1| && str2 <= str1[offset..] } ghost predicate Post(str1: string, str2: string, found: bool, i: nat) { (found <==> ExistsSubstring(str1, str2)) && (found ==> i + |str2| <= |str1| && str2 <= str1[i..]) } /* Goal: Verify correctness of the following code. Once done, remove the {:verify false} (or turn it into {:verify true}). Feel free to add GHOST code, including calls to lemmas. But DO NOT modify the specification or the original (executable) code. */ method {:verify true} FindFirstOccurrence(str1: string, str2: string) returns (found: bool, i: nat) ensures Post(str1, str2, found, i) { if |str2| == 0 { found, i := true, 0; } else if |str1| < |str2| { found, i := false, 0; // value of i irrelevant in this case } else { found, i := false, |str2|-1; while !found && i < |str1| { var j := |str2|-1; ghost var old_i := i; ghost var old_j := j; while !found && str1[i] == str2[j] { if j == 0 { found := true; } else { i, j := i-1, j-1; } } if !found { Lemma1(str1, str2, i, j, old_i, old_j, found); // ==> i := i+|str2|-j; } } } } method Main() { var str1a, str1b := "string", " in Dafny is a sequence of characters (seq<char>)"; var str1, str2 := str1a + str1b, "ring"; var found, i := FindFirstOccurrence(str1, str2); var offset := 2; } } } print "\nfound, i := FindFirstOccurrence(\"", str1, "\", \"", str2, "\") returns found == ", found; if found { print " and i == ", i; } str1 := "<= on sequences is the prefix relation"; found, i := FindFirstOccurrence(str1, str2); print "\nfound, i := FindFirstOccurrence(\"", str1, "\", \"", str2, "\") returns found == ", found; if found { print " and i == ", i; } } //this is our lemmas, invatiants and presicats ghost predicate Outter_Inv_correctness(str1: string, str2: string, found: bool, i : nat) { (found ==> (i + |str2| <= |str1| && str2 <= str1[i..])) // Second part of post condition && (!found && 0 < i <= |str1| && i != |str2|-1 ==> !(ExistsSubstring(str1[..i], str2))) // First part of post condition && (!found ==> i <= |str1|) } ghost predicate Inner_Inv_correctness(str1: string, str2: string, i : nat, j: int, found: bool){ 0 <= j <= i && // index in range j < |str2| && // index in range i < |str1| &&// index in range (str1[i] == str2[j] ==> str2[j..] <= str1[i..]) && (found ==> j==0 && str1[i] == str2[j]) } ghost predicate Inner_Inv_Termination(str1: string, str2: string, i : nat, j: int, old_i: nat, old_j: nat){ old_j - j == old_i - i } lemma {:verify true} Lemma1 (str1: string, str2: string, i : nat, j: int, old_i: nat, old_j: nat, found: bool) // requires old_j - j == old_i - i; requires !found; requires |str2| > 0; requires Outter_Inv_correctness(str1, str2, found, old_i); requires i+|str2|-j == old_i + 1; requires old_i+1 >= |str2|; requires old_i+1 <= |str1|; requires 0 <= i < |str1| && 0 <= j < |str2|; requires str1[i] != str2[j]; requires |str2| > 0; requires 0 < old_i <= |str1| ==> !(ExistsSubstring(str1[..old_i], str2)); ensures 0 < old_i+1 <= |str1| ==> !(ExistsSubstring(str1[..old_i+1], str2)); { calc{ 0 < old_i+1 <= |str1| && (ExistsSubstring(str1[..old_i+1], str2)) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> (!(ExistsSubstring(str1[..old_i], str2))) && (ExistsSubstring(str1[..old_i+1], str2)) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> {Lemma2(str1, str2, old_i, found);} ((0 < old_i < old_i+1 <= |str1| && old_i != |str2|-1) ==> (|str1[old_i+1 - |str2|..old_i+1]| == |str2|) && (str2 <= str1[old_i+1 - |str2| .. old_i+1])) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> ((0 < old_i < old_i+1 <= |str1| && old_i != |str2|-1) ==> false); } } lemma {:verify true} Lemma2 (str1: string, str2: string, i : nat, found: bool) requires 0 <= i < |str1|; requires 0 < |str2| <= i+1; requires !ExistsSubstring(str1[..i], str2); requires ExistsSubstring(str1[..i+1], str2); ensures str2 <= str1[i+1 - |str2| .. i+1]; { && ((offset <= i) || (offset == i+1)); calc{ (0 < |str2|) && (!exists offset :: 0 <= offset <= i && str2 <= str1[offset..i]) && (exists offset :: 0 <= offset <= i+1 && str2 <= str1[offset..i+1]); ==> (0 < |str2|) && (forall offset :: 0 <= offset <= i ==> !(str2 <= str1[offset..i])) && (exists offset :: 0 <= offset <= i+1 && str2 <= str1[offset..i+1]); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && str2 <= str1[offset..i+1]) && (forall offset :: 0 <= offset <= i+1 ==> (offset <= i ==> !(str2 <= str1[offset..i]))); ==> {Lemma3(str1, str2, i);} (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i]))); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset == i+1 ==> |str2| == 0)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset == i+1 ==> |str2| == 0) && (offset != i+1)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset <= i)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && !(str2 <= str1[offset..i])); ==> str2 <= str1[i+1 - |str2| .. i+1]; } } lemma Lemma3(str1: string, str2: string, i : nat) requires 0 <= i < |str1|; requires 0 < |str2| <= i+1; requires exists offset :: (0 <= offset <= i+1) && str2 <= str1[offset..i+1]; requires forall offset :: 0 <= offset <= i+1 ==> (offset <= i ==> !(str2 <= str1[offset..i])); ensures exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])); { var offset :| (0 <= offset <= i+1) && str2 <= str1[offset..i+1]; }
// Noa Leron 207131871 // Tsuri Farhana 315016907 ghost predicate ExistsSubstring(str1: string, str2: string) { // string in Dafny is a sequence of characters (seq<char>) and <= on sequences is the prefix relation exists offset :: 0 <= offset <= |str1| && str2 <= str1[offset..] } ghost predicate Post(str1: string, str2: string, found: bool, i: nat) { (found <==> ExistsSubstring(str1, str2)) && (found ==> i + |str2| <= |str1| && str2 <= str1[i..]) } /* Goal: Verify correctness of the following code. Once done, remove the {:verify false} (or turn it into {:verify true}). Feel free to add GHOST code, including calls to lemmas. But DO NOT modify the specification or the original (executable) code. */ method {:verify true} FindFirstOccurrence(str1: string, str2: string) returns (found: bool, i: nat) ensures Post(str1, str2, found, i) { if |str2| == 0 { found, i := true, 0; assert Post(str1, str2, found, i); // this case is easy for dafny :) } else if |str1| < |str2| { found, i := false, 0; // value of i irrelevant in this case assert Post(str1, str2, found, i); // this case is easy for dafny :) } else { found, i := false, |str2|-1; assert |str2| > 0; assert |str1| >= |str2|; assert Outter_Inv_correctness(str1, str2, false, |str2|-1); while !found && i < |str1| invariant Outter_Inv_correctness(str1, str2, found, i); decreases if !found then 1 else 0, |str1| - i; { assert Outter_Inv_correctness(str1, str2, found, i); assert |str2| > 0; assert !found && i < |str1|; var j := |str2|-1; ghost var old_i := i; ghost var old_j := j; while !found && str1[i] == str2[j] invariant Inner_Inv_Termination(str1, str2, i, j, old_i, old_j); invariant Inner_Inv_correctness (str1, str2, i, j, found); decreases j, if !found then 1 else 0; { if j == 0 { assert j==0 && str1[i] == str2[j]; found := true; assert Inner_Inv_Termination(str1, str2, i, j, old_i, old_j); assert Inner_Inv_correctness(str1, str2, i, j, found); } else { assert j > 0; assert Inner_Inv_Termination(str1, str2, i-1, j-1, old_i, old_j); assert Inner_Inv_correctness(str1, str2, i-1, j-1, found); i, j := i-1, j-1; assert Inner_Inv_Termination(str1, str2, i, j, old_i, old_j); assert Inner_Inv_correctness(str1, str2, i, j, found); } assert j >= 0; assert Inner_Inv_Termination(str1, str2, i, j, old_i, old_j); assert Inner_Inv_correctness(str1, str2, i, j, found); } assert Inner_Inv_Termination(str1, str2, i, j, old_i, old_j); assert Inner_Inv_correctness(str1, str2, i, j, found); assert found || str1[i] != str2[j]; // gaurd negation assert found ==> i + |str2| <= |str1| && str2 <= str1[i..]; assert !found ==> str1[i] != str2[j]; if !found { assert i < |str1|; assert |str2| > 0; assert old_j - j == old_i - i; assert old_i < i+|str2|-j; assert Outter_Inv_correctness(str1, str2, found, old_i); assert i+|str2|-j == old_i + 1; assert str1[i] != str2[j]; assert |str1[old_i+1 - |str2|..old_i+1]| == |str2|; assert str1[old_i+1 - |str2|..old_i+1] != str2; assert 0 < old_i <= |str1| ==> !(ExistsSubstring(str1[..old_i], str2)); Lemma1(str1, str2, i, j, old_i, old_j, found); // ==> assert 0 < old_i+1 <= |str1| ==> !(ExistsSubstring(str1[..old_i+1], str2)); assert 0 < i+|str2|-j <= |str1| ==> !(ExistsSubstring(str1[..i+|str2|-j], str2)); assert Outter_Inv_correctness(str1, str2, found, i+|str2|-j); i := i+|str2|-j; assert old_i < i; assert Outter_Inv_correctness(str1, str2, found, i); assert i <= |str1|; } assert !found ==> i <= |str1|; assert !found ==> old_i < i; assert !found ==> Outter_Inv_correctness(str1, str2, found, i); assert found ==> Outter_Inv_correctness(str1, str2, found, i); assert Outter_Inv_correctness(str1, str2, found, i); } assert Outter_Inv_correctness(str1, str2, found, i); assert (found ==> i + |str2| <= |str1| && str2 <= str1[i..]); assert (!found && 0 < i <= |str1| ==> !(ExistsSubstring(str1[..i], str2))); assert (!found ==> i <= |str1|); assert found || i >= |str1|; // gaurd negation assert (!found && i == |str1| ==> !(ExistsSubstring(str1[..i], str2))); assert i == |str1| ==> str1[..i] == str1; assert (!found && i == |str1| ==> !(ExistsSubstring(str1, str2))); assert !found ==> i >= |str1|; assert !found ==> i == |str1|; assert (!found ==> !ExistsSubstring(str1, str2)); assert (found ==> ExistsSubstring(str1, str2)); assert (found <==> ExistsSubstring(str1, str2)); assert (found ==> i + |str2| <= |str1| && str2 <= str1[i..]); assert Post(str1, str2, found, i); } assert Post(str1, str2, found, i); } method Main() { var str1a, str1b := "string", " in Dafny is a sequence of characters (seq<char>)"; var str1, str2 := str1a + str1b, "ring"; var found, i := FindFirstOccurrence(str1, str2); assert found by { assert ExistsSubstring(str1, str2) by { var offset := 2; assert 0 <= offset <= |str1|; assert str2 <= str1[offset..] by { assert str2 == str1[offset..][..4]; } } } print "\nfound, i := FindFirstOccurrence(\"", str1, "\", \"", str2, "\") returns found == ", found; if found { print " and i == ", i; } str1 := "<= on sequences is the prefix relation"; found, i := FindFirstOccurrence(str1, str2); print "\nfound, i := FindFirstOccurrence(\"", str1, "\", \"", str2, "\") returns found == ", found; if found { print " and i == ", i; } } //this is our lemmas, invatiants and presicats ghost predicate Outter_Inv_correctness(str1: string, str2: string, found: bool, i : nat) { (found ==> (i + |str2| <= |str1| && str2 <= str1[i..])) // Second part of post condition && (!found && 0 < i <= |str1| && i != |str2|-1 ==> !(ExistsSubstring(str1[..i], str2))) // First part of post condition && (!found ==> i <= |str1|) } ghost predicate Inner_Inv_correctness(str1: string, str2: string, i : nat, j: int, found: bool){ 0 <= j <= i && // index in range j < |str2| && // index in range i < |str1| &&// index in range (str1[i] == str2[j] ==> str2[j..] <= str1[i..]) && (found ==> j==0 && str1[i] == str2[j]) } ghost predicate Inner_Inv_Termination(str1: string, str2: string, i : nat, j: int, old_i: nat, old_j: nat){ old_j - j == old_i - i } lemma {:verify true} Lemma1 (str1: string, str2: string, i : nat, j: int, old_i: nat, old_j: nat, found: bool) // requires old_j - j == old_i - i; requires !found; requires |str2| > 0; requires Outter_Inv_correctness(str1, str2, found, old_i); requires i+|str2|-j == old_i + 1; requires old_i+1 >= |str2|; requires old_i+1 <= |str1|; requires 0 <= i < |str1| && 0 <= j < |str2|; requires str1[i] != str2[j]; requires |str2| > 0; requires 0 < old_i <= |str1| ==> !(ExistsSubstring(str1[..old_i], str2)); ensures 0 < old_i+1 <= |str1| ==> !(ExistsSubstring(str1[..old_i+1], str2)); { assert |str1[old_i+1 - |str2|..old_i+1]| == |str2|; assert str1[old_i+1 - |str2|..old_i+1] != str2; assert !(str2 <= str1[old_i+1 - |str2|..old_i+1]); assert 0 <= old_i < old_i+1 <= |str1|; assert old_i+1 >= |str2|; calc{ 0 < old_i+1 <= |str1| && (ExistsSubstring(str1[..old_i+1], str2)) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> (!(ExistsSubstring(str1[..old_i], str2))) && (ExistsSubstring(str1[..old_i+1], str2)) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> {Lemma2(str1, str2, old_i, found);} ((0 < old_i < old_i+1 <= |str1| && old_i != |str2|-1) ==> (|str1[old_i+1 - |str2|..old_i+1]| == |str2|) && (str2 <= str1[old_i+1 - |str2| .. old_i+1])) && !(str2 <= str1[old_i+1 - |str2|..old_i+1]); ==> ((0 < old_i < old_i+1 <= |str1| && old_i != |str2|-1) ==> false); } } lemma {:verify true} Lemma2 (str1: string, str2: string, i : nat, found: bool) requires 0 <= i < |str1|; requires 0 < |str2| <= i+1; requires !ExistsSubstring(str1[..i], str2); requires ExistsSubstring(str1[..i+1], str2); ensures str2 <= str1[i+1 - |str2| .. i+1]; { assert exists offset :: 0 <= offset <= i+1 && str2 <= str1[offset..i+1] && ((offset <= i) || (offset == i+1)); calc{ (0 < |str2|) && (!exists offset :: 0 <= offset <= i && str2 <= str1[offset..i]) && (exists offset :: 0 <= offset <= i+1 && str2 <= str1[offset..i+1]); ==> (0 < |str2|) && (forall offset :: 0 <= offset <= i ==> !(str2 <= str1[offset..i])) && (exists offset :: 0 <= offset <= i+1 && str2 <= str1[offset..i+1]); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && str2 <= str1[offset..i+1]) && (forall offset :: 0 <= offset <= i+1 ==> (offset <= i ==> !(str2 <= str1[offset..i]))); ==> {Lemma3(str1, str2, i);} (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i]))); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset == i+1 ==> |str2| == 0)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset == i+1 ==> |str2| == 0) && (offset != i+1)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])) && (offset <= i)); ==> (0 < |str2|) && (exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && !(str2 <= str1[offset..i])); ==> str2 <= str1[i+1 - |str2| .. i+1]; } } lemma Lemma3(str1: string, str2: string, i : nat) requires 0 <= i < |str1|; requires 0 < |str2| <= i+1; requires exists offset :: (0 <= offset <= i+1) && str2 <= str1[offset..i+1]; requires forall offset :: 0 <= offset <= i+1 ==> (offset <= i ==> !(str2 <= str1[offset..i])); ensures exists offset :: (0 <= offset <= i+1) && (str2 <= str1[offset..i+1]) && (offset <= i ==> !(str2 <= str1[offset..i])); { var offset :| (0 <= offset <= i+1) && str2 <= str1[offset..i+1]; assert 0 <= offset <= i+1 ==> (offset <= i ==> !(str2 <= str1[offset..i])); }
AssertivePrograming_tmp_tmpwf43uz0e_Find_Substring.dfy
005
005
Dafny program: 005
// Noa Leron 207131871 // Tsuri Farhana 315016907 predicate Sorted(q: seq<int>) { forall i,j :: 0 <= i <= j < |q| ==> q[i] <= q[j] } /* Goal: Implement the well known merge sort algorithm in O(a.Length X log_2(a.Length)) time, recursively. - Divide the contents of the original array into two local arrays - After sorting the local arrays (recursively), merge the contents of the two returned arrays using the Merge method (see below) - DO NOT modify the specification or any other part of the method's signature - DO NOT introduce any further methods */ method MergeSort(a: array<int>) returns (b: array<int>) ensures b.Length == a.Length && Sorted(b[..]) && multiset(a[..]) == multiset(b[..]) { if (a.Length <= 1) {b := a;} else{ var mid: nat := a.Length / 2; var a1: array<int> := new int[mid]; var a2: array<int> := new int[a.Length - mid]; var i: nat := 0; while (i < a1.Length ) { a1[i] := a[i]; a2[i] := a[i+mid]; i:=i+1; } if(a1.Length < a2.Length) { a2[i] := a[i+mid]; } // If a.Length is odd. else{ } a1:= MergeSort(a1); a2:= MergeSort(a2); b := new int [a.Length]; Merge(b, a1, a2); } } ghost predicate Inv(a: seq<int>, a1: seq<int>, a2: seq<int>, i: nat, mid: nat){ (i <= |a1|) && (i <= |a2|) && (i+mid <= |a|) && (a1[..i] == a[..i]) && (a2[..i] == a[mid..(i+mid)]) } /* Goal: Implement iteratively, correctly, efficiently, clearly DO NOT modify the specification or any other part of the method's signature */ method Merge(b: array<int>, c: array<int>, d: array<int>) requires b != c && b != d && b.Length == c.Length + d.Length requires Sorted(c[..]) && Sorted(d[..]) ensures Sorted(b[..]) && multiset(b[..]) == multiset(c[..])+multiset(d[..]) modifies b { var i: nat, j: nat := 0, 0; while i + j < b.Length { i,j := MergeLoop (b,c,d,i,j); } LemmaMultysetsEquals(b[..],c[..],d[..],i,j); } //This is a method that replace the loop body method {:verify true} MergeLoop(b: array<int>, c: array<int>, d: array<int>,i0: nat , j0: nat) returns (i: nat, j: nat) requires b != c && b != d && b.Length == c.Length + d.Length requires Sorted(c[..]) && Sorted(d[..]) requires i0 <= c.Length && j0 <= d.Length && i0 + j0 <= b.Length requires InvSubSet(b[..],c[..],d[..],i0,j0) requires InvSorted(b[..],c[..],d[..],i0,j0) requires i0 + j0 < b.Length modifies b ensures i <= c.Length && j <= d.Length && i + j <= b.Length ensures InvSubSet(b[..],c[..],d[..],i,j) ensures InvSorted(b[..],c[..],d[..],i,j) //decreases ensures ensures 0 <= c.Length - i < c.Length - i0 || (c.Length - i == c.Length - i0 && 0 <= d.Length - j < d.Length - j0) { i,j := i0,j0; if(i == c.Length || (j< d.Length && d[j] < c[i])){ // in this case we take the next value from d b[i+j] := d[j]; lemmaInvSubsetTakeValueFromD(b[..],c[..],d[..],i,j); j := j + 1; } else{ // in this case we take the next value from c b[i+j] := c[i]; lemmaInvSubsetTakeValueFromC(b[..],c[..],d[..],i,j); i := i + 1; } } //Loop invariant - b is sprted so far and the next two potential values that will go into b are bigger then the biggest value in b. ghost predicate InvSorted(b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat){ i <= |c| && j <= |d| && i + j <= |b| && ((i+j > 0 && i < |c|) ==> (b[j + i - 1] <= c[i])) && ((i+j > 0 && j < |d|) ==> (b[j + i - 1] <= d[j])) && Sorted(b[..i+j]) } //Loop invariant - the multiset of the prefix of b so far is the same multiset as the prefixes of c and d so far. ghost predicate InvSubSet(b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat){ i <= |c| && j <= |d| && i + j <= |b| && multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) } //This lemma helps dafny see that if the prefixs of arrays are the same multiset until the end of the arrays, //all the arrays are the same multiset. lemma LemmaMultysetsEquals (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i == |c|; requires j == |d|; requires i + j == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) ensures multiset(b[..]) == multiset(c[..])+multiset(d[..]); { } //This lemma helps dafny see that after adding the next value from c to b the prefixes are still the same subsets. lemma lemmaInvSubsetTakeValueFromC (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i < |c|; requires j <= |d|; requires i + j < |b|; requires |c| + |d| == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) requires b[i+j] == c[i] ensures multiset(b[..i+j+1]) == multiset(c[..i+1])+multiset(d[..j]) { } //This lemma helps dafny see that after adding the next value from d to b the prefixes are still the same subsets. lemma{:verify true} lemmaInvSubsetTakeValueFromD (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i <= |c|; requires j < |d|; requires i + j < |b|; requires |c| + |d| == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) requires b[i+j] == d[j] ensures multiset(b[..i+j+1]) == multiset(c[..i])+multiset(d[..j+1]) { } method Main() { var a := new int[3] [4, 8, 6]; var q0 := a[..]; a := MergeSort(a); print "\nThe sorted version of ", q0, " is ", a[..]; a := new int[5] [3, 8, 5, -1, 10]; q0 := a[..]; a := MergeSort(a); print "\nThe sorted version of ", q0, " is ", a[..]; //assert a[..] == [-1, 3, 5, 8, 10]; }
// Noa Leron 207131871 // Tsuri Farhana 315016907 predicate Sorted(q: seq<int>) { forall i,j :: 0 <= i <= j < |q| ==> q[i] <= q[j] } /* Goal: Implement the well known merge sort algorithm in O(a.Length X log_2(a.Length)) time, recursively. - Divide the contents of the original array into two local arrays - After sorting the local arrays (recursively), merge the contents of the two returned arrays using the Merge method (see below) - DO NOT modify the specification or any other part of the method's signature - DO NOT introduce any further methods */ method MergeSort(a: array<int>) returns (b: array<int>) ensures b.Length == a.Length && Sorted(b[..]) && multiset(a[..]) == multiset(b[..]) decreases a.Length { if (a.Length <= 1) {b := a;} else{ var mid: nat := a.Length / 2; var a1: array<int> := new int[mid]; var a2: array<int> := new int[a.Length - mid]; assert a1.Length <= a2.Length; assert a.Length == a1.Length + a2.Length; var i: nat := 0; while (i < a1.Length ) invariant Inv(a[..], a1[..], a2[..], i, mid) decreases a1.Length - i { a1[i] := a[i]; a2[i] := a[i+mid]; i:=i+1; } assert !(i < a1.Length); assert (i >= a1.Length); assert i == a1.Length; assert Inv(a[..], a1[..], a2[..], i, mid); assert (i <= |a1[..]|) && (i <= |a2[..]|) && (i+mid <= |a[..]|); assert (a1[..i] == a[..i]) && (a2[..i] == a[mid..(i+mid)]); if(a1.Length < a2.Length) { a2[i] := a[i+mid]; assert i+1 == a2.Length; assert (a2[..i+1] == a[mid..(i+1+mid)]); assert (a1[..i] == a[..i]) && (a2[..i+1] == a[mid..(i+1+mid)]); assert a[..i] + a[i..i+1+mid] == a1[..i] + a2[..i+1]; assert a[..i] + a[i..i+1+mid] == a1[..] + a2[..]; assert a[..] == a1[..] + a2[..]; } // If a.Length is odd. else{ assert i == a2.Length; assert (a1[..i] == a[..i]) && (a2[..i] == a[mid..(i+mid)]); assert a[..i] + a[i..i+mid] == a1[..i] + a2[..i]; assert a[..i] + a[i..i+mid] == a1[..] + a2[..]; assert a[..] == a1[..] + a2[..]; } assert a1.Length < a.Length; a1:= MergeSort(a1); assert a2.Length < a.Length; a2:= MergeSort(a2); b := new int [a.Length]; Merge(b, a1, a2); assert multiset(b[..]) == multiset(a1[..]) + multiset(a2[..]); assert Sorted(b[..]); } assert b.Length == a.Length && Sorted(b[..]) && multiset(a[..]) == multiset(b[..]); } ghost predicate Inv(a: seq<int>, a1: seq<int>, a2: seq<int>, i: nat, mid: nat){ (i <= |a1|) && (i <= |a2|) && (i+mid <= |a|) && (a1[..i] == a[..i]) && (a2[..i] == a[mid..(i+mid)]) } /* Goal: Implement iteratively, correctly, efficiently, clearly DO NOT modify the specification or any other part of the method's signature */ method Merge(b: array<int>, c: array<int>, d: array<int>) requires b != c && b != d && b.Length == c.Length + d.Length requires Sorted(c[..]) && Sorted(d[..]) ensures Sorted(b[..]) && multiset(b[..]) == multiset(c[..])+multiset(d[..]) modifies b { var i: nat, j: nat := 0, 0; while i + j < b.Length invariant i <= c.Length && j <= d.Length && i + j <= b.Length invariant InvSubSet(b[..],c[..],d[..],i,j) invariant InvSorted(b[..],c[..],d[..],i,j) decreases c.Length-i, d.Length-j { i,j := MergeLoop (b,c,d,i,j); assert InvSubSet(b[..],c[..],d[..],i,j); assert InvSorted(b[..],c[..],d[..],i,j); } assert InvSubSet(b[..],c[..],d[..],i,j); LemmaMultysetsEquals(b[..],c[..],d[..],i,j); assert multiset(b[..]) == multiset(c[..])+multiset(d[..]); } //This is a method that replace the loop body method {:verify true} MergeLoop(b: array<int>, c: array<int>, d: array<int>,i0: nat , j0: nat) returns (i: nat, j: nat) requires b != c && b != d && b.Length == c.Length + d.Length requires Sorted(c[..]) && Sorted(d[..]) requires i0 <= c.Length && j0 <= d.Length && i0 + j0 <= b.Length requires InvSubSet(b[..],c[..],d[..],i0,j0) requires InvSorted(b[..],c[..],d[..],i0,j0) requires i0 + j0 < b.Length modifies b ensures i <= c.Length && j <= d.Length && i + j <= b.Length ensures InvSubSet(b[..],c[..],d[..],i,j) ensures InvSorted(b[..],c[..],d[..],i,j) //decreases ensures ensures 0 <= c.Length - i < c.Length - i0 || (c.Length - i == c.Length - i0 && 0 <= d.Length - j < d.Length - j0) { i,j := i0,j0; if(i == c.Length || (j< d.Length && d[j] < c[i])){ // in this case we take the next value from d assert InvSorted(b[..][i+j:=d[j]],c[..],d[..],i,j+1); b[i+j] := d[j]; lemmaInvSubsetTakeValueFromD(b[..],c[..],d[..],i,j); assert InvSubSet(b[..],c[..],d[..],i,j+1); assert InvSorted(b[..],c[..],d[..],i,j+1); j := j + 1; } else{ assert j == d.Length || (i < c.Length && c[i] <= d[j]); // in this case we take the next value from c assert InvSorted(b[..][i+j:=c[i]],c[..],d[..],i+1,j); b[i+j] := c[i]; lemmaInvSubsetTakeValueFromC(b[..],c[..],d[..],i,j); assert InvSubSet(b[..],c[..],d[..],i+1,j); assert InvSorted(b[..],c[..],d[..],i+1,j); i := i + 1; } } //Loop invariant - b is sprted so far and the next two potential values that will go into b are bigger then the biggest value in b. ghost predicate InvSorted(b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat){ i <= |c| && j <= |d| && i + j <= |b| && ((i+j > 0 && i < |c|) ==> (b[j + i - 1] <= c[i])) && ((i+j > 0 && j < |d|) ==> (b[j + i - 1] <= d[j])) && Sorted(b[..i+j]) } //Loop invariant - the multiset of the prefix of b so far is the same multiset as the prefixes of c and d so far. ghost predicate InvSubSet(b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat){ i <= |c| && j <= |d| && i + j <= |b| && multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) } //This lemma helps dafny see that if the prefixs of arrays are the same multiset until the end of the arrays, //all the arrays are the same multiset. lemma LemmaMultysetsEquals (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i == |c|; requires j == |d|; requires i + j == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) ensures multiset(b[..]) == multiset(c[..])+multiset(d[..]); { assert b[..] == b[..i+j]; assert c[..] == c[..i]; assert d[..] == d[..j]; } //This lemma helps dafny see that after adding the next value from c to b the prefixes are still the same subsets. lemma lemmaInvSubsetTakeValueFromC (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i < |c|; requires j <= |d|; requires i + j < |b|; requires |c| + |d| == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) requires b[i+j] == c[i] ensures multiset(b[..i+j+1]) == multiset(c[..i+1])+multiset(d[..j]) { assert c[..i]+[c[i]] == c[..i+1]; assert b[..i+j+1] == b[..i+j] + [b[i+j]]; assert multiset(b[..i+j+1]) == multiset(c[..i+1])+multiset(d[..j]); } //This lemma helps dafny see that after adding the next value from d to b the prefixes are still the same subsets. lemma{:verify true} lemmaInvSubsetTakeValueFromD (b: seq<int>, c: seq<int>, d: seq<int>, i: nat, j: nat) requires i <= |c|; requires j < |d|; requires i + j < |b|; requires |c| + |d| == |b|; requires multiset(b[..i+j]) == multiset(c[..i]) + multiset(d[..j]) requires b[i+j] == d[j] ensures multiset(b[..i+j+1]) == multiset(c[..i])+multiset(d[..j+1]) { assert d[..j]+[d[j]] == d[..j+1]; assert b[..i+j+1] == b[..i+j] + [b[i+j]]; assert multiset(b[..i+j+1]) == multiset(c[..i])+multiset(d[..j+1]); } method Main() { var a := new int[3] [4, 8, 6]; var q0 := a[..]; assert q0 == [4,8,6]; a := MergeSort(a); assert a.Length == |q0| && multiset(a[..]) == multiset(q0); print "\nThe sorted version of ", q0, " is ", a[..]; assert Sorted(a[..]); assert a[..] == [4, 6, 8]; a := new int[5] [3, 8, 5, -1, 10]; q0 := a[..]; assert q0 == [3, 8, 5, -1, 10]; a := MergeSort(a); assert a.Length == |q0| && multiset(a[..]) == multiset(q0); print "\nThe sorted version of ", q0, " is ", a[..]; assert Sorted(a[..]); //assert a[..] == [-1, 3, 5, 8, 10]; }
AssertivePrograming_tmp_tmpwf43uz0e_MergeSort.dfy
006
006
Dafny program: 006
// method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) // // ensures count == |set i | i in numbers && i < threshold| // ensures count == |SetLessThan(numbers, threshold)| // { // count := 0; // var ss := numbers; // while ss != {} // decreases |ss| // { // var i: int :| i in ss; // ss := ss - {i}; // if i < threshold { // count := count + 1; // } // } // assert count == |SetLessThan(numbers, threshold)|; // // assert count == |set i | i in numbers && i < threshold|; // } function SetLessThan(numbers: set<int>, threshold: int): set<int> { set i | i in numbers && i < threshold } method Main() { // var s: set<int> := {1, 2, 3, 4, 5}; // var c: int := CountLessThan(s, 4); // print c; // assert c == 3; // if you manualy create set and sequence with same elements, |s|==|t| works var t: seq<int> := [1, 2, 3]; var s: set<int> := {1, 2, 3}; // but if you create set from the sequence with distinct elements it does not understand that |s|==|t| // Dafny has problems when reasoning about set sizes ==> s := set x | x in t; // assert |s| == |t|; // not verifying // assert |s| == 3; // not verifying // other expriments set_memebrship_implies_cardinality(s, set x | x in t); // s and the other argument is the same thing var s2 : set<int> := set x | x in t; s2 := {1, 2, 3}; // assert |s| == |s2|; // may not hold set_memebrship_implies_cardinality(s, s2); } lemma set_memebrship_implies_cardinality_helper<A>(s: set<A>, t: set<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t ensures |s| == |t| if s_size == 0 { } else { var s_hd; // assign s_hd to a value *such that* s_hd is in s (see such_that expressions) s_hd :| s_hd in s; set_memebrship_implies_cardinality_helper(s - {s_hd}, t - {s_hd}, s_size - 1); } } lemma set_memebrship_implies_cardinality<A>(s: set<A>, t: set<A>) requires forall x :: x in s <==> x in t ensures |s| == |t| { set_memebrship_implies_cardinality_helper(s, t, |s|); } /* lemma Bijection(arr: seq<int>, s: set<int>) // returns (bool) requires sorted(arr) // requires forall x, y :: x in s && y in s && x != y ==> x < y ensures |s| == |arr| { var mapping: map<int, int> := map[]; // Establish the bijection for i := 0 to |arr| { mapping := mapping[arr[i]:= arr[i]]; } // Prove injectiveness // Prove surjectiveness // assert forall x :: x in s ==> exists i :: 0 <= i < |arr|-1 && arr[i] == x; // Conclude equinumerosity // assert |s| == |arr|; // return true; } */ function seqSet(nums: seq<int>, index: nat): set<int> { set x | 0 <= x < index < |nums| :: nums[x] } lemma containsDuplicateI(nums: seq<int>) returns (containsDuplicate: bool) ensures containsDuplicate ==> exists i,j :: 0 <= i < j < |nums| && nums[i] == nums[j] { var windowGhost: set<int> := {}; var windowSet: set<int> := {}; for i:= 0 to |nums| // invariant forall x :: x in windowSet ==> x in nums { windowGhost := windowSet; if nums[i] in windowSet { // does not verify // if nums[i] in seqSet(nums, i) { //verifies return true; } windowSet := windowSet + {nums[i]}; } return false; } // lemma numElemsOfSet(a: seq<int>) // requires sorted(a) // { // assert distinct(a); // var s := set x | x in a; // assert forall x :: x in s ==> x in a[..]; // assert forall x :: x in a ==> x in s; // assert |s| == |a|; // } // lemma CardinalitySetEqualsArray(a: seq<int>, s: set<int>) // requires s == set x | x in a // requires distinct(a) // ensures |s| == |a| // { // assert forall x :: x in s ==> exists i :: 0 <= i < |a| && a[i] == x; // assert forall i, j :: 0 <= i < |a| && 0 <= j < |a| && i != j ==> a[i] != a[j]; // // Assert that each element in the array is in the set // assert forall i :: 0 <= i < |a| ==> a[i] in s; // // Assert that the set contains exactly the elements in the array // assert s == set x | x in a; // // Assert that the set is a subset of the array // assert forall x :: x in s <==> x in a; // // Conclude the equivalence // assert |s| == |a|; // } /* lemma memebrship_implies_cardinality_helper<A>(s: set<A>, t: seq<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t requires forall i, j :: (0 <= i < |t| && 0 <= j < |t| && i != j ) ==> t[i] != t[j] requires |set x | x in t| == |t| ensures |s| == |t| if s_size == 0 { } else { var t_hd; t_hd := t[0]; ghost var t_h := set x | x in t[1..]; memebrship_implies_cardinality_helper(s - {t_hd}, t[1..], s_size - 1); } } lemma memebrship_implies_cardinality<A>(s: set<A>, t: seq<A>) requires forall x :: x in s <==> x in t ensures |s| == |t| { memebrship_implies_cardinality_helper(s, t, |s|); } */ lemma set_memebrship_implies_equality_helper<A>(s: set<A>, t: set<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t ensures s == t if s_size == 0 { } else { var s_hd; // assign s_hd to a value *such that* s_hd is in s (see such_that expressions) s_hd :| s_hd in s; set_memebrship_implies_equality_helper(s - {s_hd}, t - {s_hd}, s_size - 1); } } lemma set_memebrship_implies_equality<A>(s: set<A>, t: set<A>) requires forall x :: x in s <==> x in t ensures s == t { set_memebrship_implies_equality_helper(s, t, |s|); } // TODO play with this for keys==Contents lemma set_seq_equality(s: set<int>, t: seq<int>) requires distinct(t) requires forall x :: x in t <==> x in s { var s2 : set<int> := set x | x in t; set_memebrship_implies_equality_helper(s, s2, |s|); // assert |s2| == |t|; // assert |s| == |t|; } ghost predicate SortedSeq(a: seq<int>) //sequence is sorted from left to right { (forall i,j :: 0<= i< j < |a| ==> ( a[i] < a[j] )) } method GetInsertIndex(a: array<int>, limit: int, x:int) returns (idx:int) // get index so that array stays sorted requires x !in a[..] requires 0 <= limit <= a.Length requires SortedSeq(a[..limit]) ensures 0<= idx <= limit ensures SortedSeq(a[..limit]) ensures idx > 0 ==> a[idx-1]< x ensures idx < limit ==> x < a[idx] { idx := limit; for i := 0 to limit { if x < a[i] { idx := i; break; } } } predicate sorted(a: seq<int>) { forall i,j :: 0 <= i < j < |a| ==> a[i] < a[j] } predicate distinct(a: seq<int>) { forall i,j :: (0 <= i < |a| && 0 <= j < |a| && i != j) ==> a[i] != a[j] } predicate sorted_eq(a: seq<int>) { forall i,j :: 0 <= i < j < |a| ==> a[i] <= a[j] } predicate lessThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] < key } predicate greaterThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] > key } predicate greaterEqualThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] >= key } /* method InsertSorted(a: array<int>, key: int ) returns (b: array<int>) requires sorted_eq(a[..]) ensures sorted_eq(b[..]) { b:= new int[a.Length + 1]; ghost var k := 0; b[0] := key; ghost var a' := a[..]; var i:= 0; while (i < a.Length) modifies b { if(a[i]<key) { b[i]:= a[i]; b[i+1] := key; k := i+1; } else if (a[i] >= key) { b[i+1] := a[i]; } i := i+1; } } */ lemma DistributiveLemma(a: seq<bool>, b: seq<bool>) ensures count(a + b) == count(a) + count(b) { if a == [] { } else { DistributiveLemma(a[1..], b); } } function count(a: seq<bool>): nat { if |a| == 0 then 0 else (if a[0] then 1 else 0) + count(a[1..]) } lemma DistributiveIn(a: seq<int>, b:seq<int>, k:int, key:int) requires |a| + 1 == |b| requires 0 <= k <= |a| requires b == a[..k] + [key] + a[k..] ensures forall i :: 0 <= i < |a| ==> a[i] in b { } lemma DistributiveGreater(a: seq<int>, b:seq<int>, k:int, key:int) requires |a| + 1 == |b| requires 0 <= k <= |a| requires b == a[..k] + [key] + a[k..] requires forall j :: 0 <= j < |a| ==> a[j] > 0 requires key > 0 ensures forall i :: 0 <= i < |b| ==> b[i] > 0 { // assert ((forall j :: 0 <= j < k ==> b[j] > 0) && (forall j :: k <= j < |a| ==> b[j] > 0)) ==> (forall j :: 0 <= j < |b| ==> b[j] > 0); } // verifies in more than 45 seconds, but less than 100 seconds method InsertIntoSorted(a: array<int>, limit:int, key:int) returns (b: array<int>) requires key > 0 requires key !in a[..] requires 0 <= limit < a.Length requires forall i :: 0 <= i < limit ==> a[i] > 0 requires forall i :: limit <= i < a.Length ==> a[i] == 0 requires sorted(a[..limit]) ensures b.Length == a.Length ensures sorted(b[..(limit+ 1)]) ensures forall i :: limit + 1 <= i < b.Length ==> b[i] == 0 ensures forall i :: 0 <= i < limit ==> a[i] in b[..] ensures forall i :: 0 <= i < limit + 1 ==> b[i] > 0 { b:= new int[a.Length]; ghost var k := 0; b[0] := key; ghost var a' := a[..]; var i:= 0; while (i < limit) modifies b { if(a[i]<key) { b[i]:= a[i]; b[i+1] := key; k := i+1; } else if (a[i] >= key) { b[i+1] := a[i]; } i := i+1; } // assert b[..limit+1] == a[..k] + [key] + a[k..limit]; DistributiveIn(a[..limit], b[..limit+1], k, key); DistributiveGreater(a[..limit], b[..limit+1], k, key); // assert forall i :: 0 <= i < limit + 1 ==> b[i] > 0; ghost var b' := b[..]; i := limit + 1; while i < b.Length { b[i] := 0; i := i + 1; } }
// method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) // // ensures count == |set i | i in numbers && i < threshold| // ensures count == |SetLessThan(numbers, threshold)| // { // count := 0; // var ss := numbers; // while ss != {} // decreases |ss| // { // var i: int :| i in ss; // ss := ss - {i}; // if i < threshold { // count := count + 1; // } // } // assert count == |SetLessThan(numbers, threshold)|; // // assert count == |set i | i in numbers && i < threshold|; // } function SetLessThan(numbers: set<int>, threshold: int): set<int> { set i | i in numbers && i < threshold } method Main() { // var s: set<int> := {1, 2, 3, 4, 5}; // var c: int := CountLessThan(s, 4); // print c; // assert c == 3; // if you manualy create set and sequence with same elements, |s|==|t| works var t: seq<int> := [1, 2, 3]; var s: set<int> := {1, 2, 3}; assert |s| == 3; assert |s| == |t|; // but if you create set from the sequence with distinct elements it does not understand that |s|==|t| // Dafny has problems when reasoning about set sizes ==> s := set x | x in t; assert forall x :: x in t ==> x in s; assert forall x :: x in s ==> x in t; assert forall x :: x in s <==> x in t; assert forall i, j :: 0 <= i < |t| && 0 <= j < |t| && i !=j ==> t[i] != t[j]; assert |t| == 3; // assert |s| == |t|; // not verifying // assert |s| == 3; // not verifying // other expriments set_memebrship_implies_cardinality(s, set x | x in t); // s and the other argument is the same thing var s2 : set<int> := set x | x in t; assert |s| == |s2|; s2 := {1, 2, 3}; // assert |s| == |s2|; // may not hold set_memebrship_implies_cardinality(s, s2); assert |s| == |s2|; // after lemma it holds } lemma set_memebrship_implies_cardinality_helper<A>(s: set<A>, t: set<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t ensures |s| == |t| decreases s_size { if s_size == 0 { } else { var s_hd; // assign s_hd to a value *such that* s_hd is in s (see such_that expressions) s_hd :| s_hd in s; set_memebrship_implies_cardinality_helper(s - {s_hd}, t - {s_hd}, s_size - 1); } } lemma set_memebrship_implies_cardinality<A>(s: set<A>, t: set<A>) requires forall x :: x in s <==> x in t ensures |s| == |t| { set_memebrship_implies_cardinality_helper(s, t, |s|); } /* lemma Bijection(arr: seq<int>, s: set<int>) // returns (bool) requires sorted(arr) // requires forall x, y :: x in s && y in s && x != y ==> x < y ensures |s| == |arr| { var mapping: map<int, int> := map[]; // Establish the bijection for i := 0 to |arr| { mapping := mapping[arr[i]:= arr[i]]; } // Prove injectiveness assert forall i, j :: (0 <= i < |arr|-1 && 0 <= j < |arr|-1 && i != j )==> mapping[arr[i]] != mapping[arr[j]]; // Prove surjectiveness // assert forall x :: x in s ==> exists i :: 0 <= i < |arr|-1 && arr[i] == x; // Conclude equinumerosity // assert |s| == |arr|; // return true; } */ function seqSet(nums: seq<int>, index: nat): set<int> { set x | 0 <= x < index < |nums| :: nums[x] } lemma containsDuplicateI(nums: seq<int>) returns (containsDuplicate: bool) ensures containsDuplicate ==> exists i,j :: 0 <= i < j < |nums| && nums[i] == nums[j] { var windowGhost: set<int> := {}; var windowSet: set<int> := {}; for i:= 0 to |nums| invariant 0 <= i <= |nums| invariant forall j :: 0 <= j < i < |nums| ==> nums[j] in windowSet // invariant forall x :: x in windowSet ==> x in nums invariant forall x :: x in windowSet ==> x in nums[0..i] invariant seqSet(nums, i) <= windowSet { windowGhost := windowSet; if nums[i] in windowSet { // does not verify // if nums[i] in seqSet(nums, i) { //verifies return true; } windowSet := windowSet + {nums[i]}; } return false; } // lemma numElemsOfSet(a: seq<int>) // requires sorted(a) // { // assert distinct(a); // var s := set x | x in a; // assert forall x :: x in s ==> x in a[..]; // assert forall x :: x in a ==> x in s; // assert |s| == |a|; // } // lemma CardinalitySetEqualsArray(a: seq<int>, s: set<int>) // requires s == set x | x in a // requires distinct(a) // ensures |s| == |a| // { // assert forall x :: x in s ==> exists i :: 0 <= i < |a| && a[i] == x; // assert forall i, j :: 0 <= i < |a| && 0 <= j < |a| && i != j ==> a[i] != a[j]; // // Assert that each element in the array is in the set // assert forall i :: 0 <= i < |a| ==> a[i] in s; // // Assert that the set contains exactly the elements in the array // assert s == set x | x in a; // // Assert that the set is a subset of the array // assert forall x :: x in s <==> x in a; // // Conclude the equivalence // assert |s| == |a|; // } /* lemma memebrship_implies_cardinality_helper<A>(s: set<A>, t: seq<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t requires forall i, j :: (0 <= i < |t| && 0 <= j < |t| && i != j ) ==> t[i] != t[j] requires |set x | x in t| == |t| ensures |s| == |t| decreases s_size { if s_size == 0 { } else { var t_hd; t_hd := t[0]; assert t_hd in s; ghost var t_h := set x | x in t[1..]; assert |t_h| == |t[1..]|; memebrship_implies_cardinality_helper(s - {t_hd}, t[1..], s_size - 1); } } lemma memebrship_implies_cardinality<A>(s: set<A>, t: seq<A>) requires forall x :: x in s <==> x in t ensures |s| == |t| { memebrship_implies_cardinality_helper(s, t, |s|); } */ lemma set_memebrship_implies_equality_helper<A>(s: set<A>, t: set<A>, s_size: int) requires s_size >= 0 && s_size == |s| requires forall x :: x in s <==> x in t ensures s == t decreases s_size { if s_size == 0 { } else { var s_hd; // assign s_hd to a value *such that* s_hd is in s (see such_that expressions) s_hd :| s_hd in s; set_memebrship_implies_equality_helper(s - {s_hd}, t - {s_hd}, s_size - 1); } } lemma set_memebrship_implies_equality<A>(s: set<A>, t: set<A>) requires forall x :: x in s <==> x in t ensures s == t { set_memebrship_implies_equality_helper(s, t, |s|); } // TODO play with this for keys==Contents lemma set_seq_equality(s: set<int>, t: seq<int>) requires distinct(t) requires forall x :: x in t <==> x in s { var s2 : set<int> := set x | x in t; set_memebrship_implies_equality_helper(s, s2, |s|); assert |s2| == |s|; // assert |s2| == |t|; // assert |s| == |t|; } ghost predicate SortedSeq(a: seq<int>) //sequence is sorted from left to right { (forall i,j :: 0<= i< j < |a| ==> ( a[i] < a[j] )) } method GetInsertIndex(a: array<int>, limit: int, x:int) returns (idx:int) // get index so that array stays sorted requires x !in a[..] requires 0 <= limit <= a.Length requires SortedSeq(a[..limit]) ensures 0<= idx <= limit ensures SortedSeq(a[..limit]) ensures idx > 0 ==> a[idx-1]< x ensures idx < limit ==> x < a[idx] { idx := limit; for i := 0 to limit invariant i>0 ==> x > a[i-1] { if x < a[i] { idx := i; break; } } } predicate sorted(a: seq<int>) { forall i,j :: 0 <= i < j < |a| ==> a[i] < a[j] } predicate distinct(a: seq<int>) { forall i,j :: (0 <= i < |a| && 0 <= j < |a| && i != j) ==> a[i] != a[j] } predicate sorted_eq(a: seq<int>) { forall i,j :: 0 <= i < j < |a| ==> a[i] <= a[j] } predicate lessThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] < key } predicate greaterThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] > key } predicate greaterEqualThan(a:seq<int>, key:int) { forall i :: 0 <= i < |a| ==> a[i] >= key } /* method InsertSorted(a: array<int>, key: int ) returns (b: array<int>) requires sorted_eq(a[..]) ensures sorted_eq(b[..]) { b:= new int[a.Length + 1]; ghost var k := 0; b[0] := key; ghost var a' := a[..]; var i:= 0; while (i < a.Length) modifies b invariant 0 <= k <= i <= a.Length invariant b.Length == a.Length + 1 invariant a[..] == a' invariant lessThan(a[..i], key) ==> i == k invariant lessThan(a[..k], key) invariant b[..k] == a[..k] invariant b[k] == key invariant k < i ==> b[k+1..i+1] == a[k..i] invariant k < i ==> greaterEqualThan(b[k+1..i+1], key) invariant 0 <= k < b.Length && b[k] == key { if(a[i]<key) { b[i]:= a[i]; b[i+1] := key; k := i+1; } else if (a[i] >= key) { b[i+1] := a[i]; } i := i+1; } assert b[..] == a[..k] + [key] + a[k..]; } */ lemma DistributiveLemma(a: seq<bool>, b: seq<bool>) ensures count(a + b) == count(a) + count(b) { if a == [] { assert a + b == b; } else { DistributiveLemma(a[1..], b); assert a + b == [a[0]] + (a[1..] + b); } } function count(a: seq<bool>): nat { if |a| == 0 then 0 else (if a[0] then 1 else 0) + count(a[1..]) } lemma DistributiveIn(a: seq<int>, b:seq<int>, k:int, key:int) requires |a| + 1 == |b| requires 0 <= k <= |a| requires b == a[..k] + [key] + a[k..] ensures forall i :: 0 <= i < |a| ==> a[i] in b { assert forall j :: 0 <= j < k ==> a[j] in b; assert forall j :: k <= j < |a| ==> a[j] in b; assert ((forall j :: 0 <= j < k ==> a[j] in b) && (forall j :: k <= j < |a| ==> a[j] in b)) ==> (forall j :: 0 <= j < |a| ==> a[j] in b); assert forall j :: 0 <= j < |a| ==> a[j] in b; } lemma DistributiveGreater(a: seq<int>, b:seq<int>, k:int, key:int) requires |a| + 1 == |b| requires 0 <= k <= |a| requires b == a[..k] + [key] + a[k..] requires forall j :: 0 <= j < |a| ==> a[j] > 0 requires key > 0 ensures forall i :: 0 <= i < |b| ==> b[i] > 0 { // assert ((forall j :: 0 <= j < k ==> b[j] > 0) && (forall j :: k <= j < |a| ==> b[j] > 0)) ==> (forall j :: 0 <= j < |b| ==> b[j] > 0); assert forall j :: 0 <= j < |b| ==> b[j] > 0; } // verifies in more than 45 seconds, but less than 100 seconds method InsertIntoSorted(a: array<int>, limit:int, key:int) returns (b: array<int>) requires key > 0 requires key !in a[..] requires 0 <= limit < a.Length requires forall i :: 0 <= i < limit ==> a[i] > 0 requires forall i :: limit <= i < a.Length ==> a[i] == 0 requires sorted(a[..limit]) ensures b.Length == a.Length ensures sorted(b[..(limit+ 1)]) ensures forall i :: limit + 1 <= i < b.Length ==> b[i] == 0 ensures forall i :: 0 <= i < limit ==> a[i] in b[..] ensures forall i :: 0 <= i < limit + 1 ==> b[i] > 0 { b:= new int[a.Length]; ghost var k := 0; b[0] := key; ghost var a' := a[..]; var i:= 0; while (i < limit) modifies b invariant 0 <= k <= i <= limit invariant b.Length == a.Length invariant a[..] == a' invariant lessThan(a[..i], key) ==> i == k invariant lessThan(a[..k], key) invariant b[..k] == a[..k] invariant b[k] == key invariant k < i ==> b[k+1..i+1] == a[k..i] invariant k < i ==> greaterThan(b[k+1..i+1], key) invariant 0 <= k < b.Length && b[k] == key { if(a[i]<key) { b[i]:= a[i]; b[i+1] := key; k := i+1; } else if (a[i] >= key) { b[i+1] := a[i]; } i := i+1; } assert b[..limit+1] == a[..k] + [key] + a[k..limit]; assert sorted(b[..limit+1]); // assert b[..limit+1] == a[..k] + [key] + a[k..limit]; DistributiveIn(a[..limit], b[..limit+1], k, key); assert forall i :: 0 <= i < limit ==> a[i] in b[..limit+1]; DistributiveGreater(a[..limit], b[..limit+1], k, key); // assert forall i :: 0 <= i < limit + 1 ==> b[i] > 0; ghost var b' := b[..]; i := limit + 1; while i < b.Length invariant limit + 1 <= i <= b.Length invariant forall j :: limit + 1 <= j < i ==> b[j] == 0 invariant b[..limit+1] == b'[..limit+1] invariant sorted(b[..limit+1]) { b[i] := 0; i := i + 1; } assert forall i :: limit + 1 <= i < b.Length ==> b[i] == 0; }
BPTree-verif_tmp_tmpq1z6xm1d_Utils.dfy
009
009
Dafny program: 009
//Bubblesort CS 494 submission //References: https://stackoverflow.com/questions/69364687/how-to-prove-time-complexity-of-bubble-sort-using-dafny/69365785#69365785 // predicate checks if elements of a are in ascending order, two additional conditions are added to allow us to sort in specific range within array predicate sorted(a:array<int>, from:int, to:int) requires a != null; // requires array to have n amount of elements reads a; requires 0 <= from <= to <= a.Length; // pre condition checks that from is the start of the range and to is the end of the range, requires values to be within 0 - a.Length { forall x, y :: from <= x < y < to ==> a[x] <= a[y] } //helps ensure swapping is valid, it is used inside the nested while loop to make sure linear order is being kept predicate pivot(a:array<int>, to:int, pvt:int) requires a != null; // requires array to have n amount of elements reads a; requires 0 <= pvt < to <= a.Length; { forall x, y :: 0 <= x < pvt < y < to ==> a[x] <= a[y] // all values within the array should be in ascending order } // Here having the algorithm for the bubblesort method BubbleSort (a: array<int>) requires a != null && a.Length > 0; // makes sure a is not empty and length is greater than 0 modifies a; // as method runs, we are changing a ensures sorted(a, 0, a.Length); // makes sure elements of array a are sorted from 0 - a.Length ensures multiset(a[..]) == multiset(old(a[..])); // Since a is being modified, we deference the heap //and compare the previous elements to current elements. { var i := 1; while (i < a.Length) { var j := i; //this while loop inherits any previous pre/post conditions. It checks that while (j > 0) { // Here it also simplifies the remaining invariants to handle the empty array. if (a[j-1] > a[j]) { // reverse iterate through range within the array a[j - 1], a[j] := a[j], a[j - 1]; // swaps objects if the IF condition is met } j := j - 1; // decrement j } i := i+1; // increment i } }
//Bubblesort CS 494 submission //References: https://stackoverflow.com/questions/69364687/how-to-prove-time-complexity-of-bubble-sort-using-dafny/69365785#69365785 // predicate checks if elements of a are in ascending order, two additional conditions are added to allow us to sort in specific range within array predicate sorted(a:array<int>, from:int, to:int) requires a != null; // requires array to have n amount of elements reads a; requires 0 <= from <= to <= a.Length; // pre condition checks that from is the start of the range and to is the end of the range, requires values to be within 0 - a.Length { forall x, y :: from <= x < y < to ==> a[x] <= a[y] } //helps ensure swapping is valid, it is used inside the nested while loop to make sure linear order is being kept predicate pivot(a:array<int>, to:int, pvt:int) requires a != null; // requires array to have n amount of elements reads a; requires 0 <= pvt < to <= a.Length; { forall x, y :: 0 <= x < pvt < y < to ==> a[x] <= a[y] // all values within the array should be in ascending order } // Here having the algorithm for the bubblesort method BubbleSort (a: array<int>) requires a != null && a.Length > 0; // makes sure a is not empty and length is greater than 0 modifies a; // as method runs, we are changing a ensures sorted(a, 0, a.Length); // makes sure elements of array a are sorted from 0 - a.Length ensures multiset(a[..]) == multiset(old(a[..])); // Since a is being modified, we deference the heap //and compare the previous elements to current elements. { var i := 1; while (i < a.Length) invariant i <= a.Length; // more-or-less validates while loop condition during coputations invariant sorted(a, 0, i); // Checks that for each increment of i, the array stays sorted, causing the invariant multiset(a[..]) == multiset(old(a[..])); //makes sure elements that existed in previous heap for a are presnt in current run { var j := i; //this while loop inherits any previous pre/post conditions. It checks that while (j > 0) invariant multiset(a[..]) == multiset(old(a[..])); invariant sorted(a, 0, j); // O(n^2) runtime. Makes sure that a[0] - a[j] is sorted invariant sorted(a, j, i+1); // then makes sure from a[j] - a[i+1] is sorted invariant pivot(a, i+1, j); // important for ensuring that each computation is correct after swapping { // Here it also simplifies the remaining invariants to handle the empty array. if (a[j-1] > a[j]) { // reverse iterate through range within the array a[j - 1], a[j] := a[j], a[j - 1]; // swaps objects if the IF condition is met } j := j - 1; // decrement j } i := i+1; // increment i } }
CS494-final-project_tmp_tmp7nof55uq_bubblesort.dfy
010
010
Dafny program: 010
class LFUCache { var capacity : int; var cacheMap : map<int, (int, int)>; //key -> {value, freq} constructor(capacity: int) requires capacity > 0; ensures Valid(); { this.capacity := capacity; this.cacheMap := map[]; } predicate Valid() reads this; // reads this.freqMap.Values; { // general value check this.capacity > 0 && 0 <= |cacheMap| <= capacity && (|cacheMap| > 0 ==> (forall e :: e in cacheMap ==> cacheMap[e].1 >= 1)) && // frequency should always larger than 0 (|cacheMap| > 0 ==> (forall e :: e in cacheMap ==> cacheMap[e].0 >= 0)) // only allow positive values } method getLFUKey() returns (lfuKey : int) requires Valid(); requires |cacheMap| > 0; ensures Valid(); ensures lfuKey in cacheMap; ensures forall k :: k in cacheMap.Items ==> cacheMap[lfuKey].1 <= cacheMap[k.0].1; { var items := cacheMap.Items; var seenItems := {}; var anyItem :| anyItem in items; var minFreq := anyItem.1.1; lfuKey := anyItem.0; while items != {} { var item :| item in items; if (item.1.1 < minFreq) { lfuKey := item.0; minFreq := item.1.1; } items := items - { item }; seenItems := seenItems + { item }; } // assert forall k :: k in cacheMap ==> cacheMap[lfuKey].1 <= cacheMap[k].1; // ???? return lfuKey; } method get(key: int) returns (value: int) requires Valid(); modifies this; ensures Valid(); ensures key !in cacheMap ==> value == -1; ensures forall e :: e in old(cacheMap) <==> e in cacheMap; ensures forall e :: e in old(cacheMap) ==> (old(cacheMap[e].0) == cacheMap[e].0); ensures key in cacheMap ==> value == cacheMap[key].0 && old(cacheMap[key].1) == cacheMap[key].1-1; { if(key !in cacheMap) { value := -1; } else{ value := cacheMap[key].0; var oldFreq := cacheMap[key].1; var newV := (value, oldFreq + 1); cacheMap := cacheMap[key := newV]; } print "after get: "; print cacheMap; print "\n"; return value; } method put(key: int, value: int) requires Valid(); requires value > 0; modifies this ensures Valid(); { if (key in cacheMap) { var currFreq := cacheMap[key].1; cacheMap := cacheMap[key := (value, currFreq)]; } else { if (|cacheMap| < capacity) { cacheMap := cacheMap[key := (value, 1)]; } else { var LFUKey := getLFUKey(); ghost var oldMap := cacheMap; var newMap := cacheMap - {LFUKey}; cacheMap := newMap; ghost var oldCard := |oldMap|; ghost var newCard := |newMap|; cacheMap := cacheMap[key := (value, 1)]; } } print "after put: "; print cacheMap; print "\n"; } } method Main() { var LFUCache := new LFUCache(5); print "Cache Capacity = 5 \n"; print "PUT (1, 1) - "; LFUCache.put(1,1); print "PUT (2, 2) - "; LFUCache.put(2,2); print "PUT (3, 3) - "; LFUCache.put(3,3); print "GET (1) - "; var val := LFUCache.get(1); print "get(1) = "; print val; print "\n"; print "PUT (3, 5) - "; LFUCache.put(3,5); print "GET (3) - "; val := LFUCache.get(3); print "get(3) = "; print val; print "\n"; print "PUT (4, 6) - "; LFUCache.put(4,6); print "PUT (5, 7) - "; LFUCache.put(5,7); print "PUT (10, 100) - "; LFUCache.put(10,100); print "GET (2) - "; val := LFUCache.get(2); print "get(2) = "; print val; print "\n"; }
class LFUCache { var capacity : int; var cacheMap : map<int, (int, int)>; //key -> {value, freq} constructor(capacity: int) requires capacity > 0; ensures Valid(); { this.capacity := capacity; this.cacheMap := map[]; } predicate Valid() reads this; // reads this.freqMap.Values; { // general value check this.capacity > 0 && 0 <= |cacheMap| <= capacity && (|cacheMap| > 0 ==> (forall e :: e in cacheMap ==> cacheMap[e].1 >= 1)) && // frequency should always larger than 0 (|cacheMap| > 0 ==> (forall e :: e in cacheMap ==> cacheMap[e].0 >= 0)) // only allow positive values } method getLFUKey() returns (lfuKey : int) requires Valid(); requires |cacheMap| > 0; ensures Valid(); ensures lfuKey in cacheMap; ensures forall k :: k in cacheMap.Items ==> cacheMap[lfuKey].1 <= cacheMap[k.0].1; { var items := cacheMap.Items; var seenItems := {}; var anyItem :| anyItem in items; var minFreq := anyItem.1.1; lfuKey := anyItem.0; while items != {} decreases |items|; invariant cacheMap.Items >= items; invariant cacheMap.Items >= seenItems; invariant cacheMap.Items == seenItems + items; invariant lfuKey in cacheMap; invariant cacheMap[lfuKey].1 == minFreq; invariant forall e :: e in seenItems ==> minFreq <= e.1.1; invariant forall e :: e in seenItems ==> minFreq <= cacheMap[e.0].1; invariant forall e :: e in seenItems ==> cacheMap[lfuKey].1 <= cacheMap[e.0].1; invariant exists e :: e in seenItems + items ==> minFreq == e.1.1; { var item :| item in items; if (item.1.1 < minFreq) { lfuKey := item.0; minFreq := item.1.1; } items := items - { item }; seenItems := seenItems + { item }; } assert seenItems == cacheMap.Items; assert cacheMap[lfuKey].1 == minFreq; assert forall e :: e in seenItems ==> minFreq <= e.1.1; assert forall e :: e in cacheMap.Items ==> minFreq <= e.1.1; assert forall k :: k in seenItems ==> cacheMap[lfuKey].1 <= cacheMap[k.0].1; assert forall k :: k in cacheMap.Items ==> cacheMap[lfuKey].1 <= cacheMap[k.0].1; // assert forall k :: k in cacheMap ==> cacheMap[lfuKey].1 <= cacheMap[k].1; // ???? return lfuKey; } method get(key: int) returns (value: int) requires Valid(); modifies this; ensures Valid(); ensures key !in cacheMap ==> value == -1; ensures forall e :: e in old(cacheMap) <==> e in cacheMap; ensures forall e :: e in old(cacheMap) ==> (old(cacheMap[e].0) == cacheMap[e].0); ensures key in cacheMap ==> value == cacheMap[key].0 && old(cacheMap[key].1) == cacheMap[key].1-1; { assert key in cacheMap ==> cacheMap[key].0 >= 0; if(key !in cacheMap) { value := -1; } else{ assert key in cacheMap; assert cacheMap[key].0 >= 0; value := cacheMap[key].0; var oldFreq := cacheMap[key].1; var newV := (value, oldFreq + 1); cacheMap := cacheMap[key := newV]; } print "after get: "; print cacheMap; print "\n"; return value; } method put(key: int, value: int) requires Valid(); requires value > 0; modifies this ensures Valid(); { if (key in cacheMap) { var currFreq := cacheMap[key].1; cacheMap := cacheMap[key := (value, currFreq)]; } else { if (|cacheMap| < capacity) { cacheMap := cacheMap[key := (value, 1)]; } else { var LFUKey := getLFUKey(); assert LFUKey in cacheMap; assert |cacheMap| == capacity; ghost var oldMap := cacheMap; var newMap := cacheMap - {LFUKey}; cacheMap := newMap; assert newMap == cacheMap - {LFUKey}; assert LFUKey !in cacheMap; assert LFUKey in oldMap; ghost var oldCard := |oldMap|; ghost var newCard := |newMap|; assert |cacheMap.Keys| < |oldMap|; // ???? cacheMap := cacheMap[key := (value, 1)]; } } print "after put: "; print cacheMap; print "\n"; } } method Main() { var LFUCache := new LFUCache(5); print "Cache Capacity = 5 \n"; print "PUT (1, 1) - "; LFUCache.put(1,1); print "PUT (2, 2) - "; LFUCache.put(2,2); print "PUT (3, 3) - "; LFUCache.put(3,3); print "GET (1) - "; var val := LFUCache.get(1); print "get(1) = "; print val; print "\n"; print "PUT (3, 5) - "; LFUCache.put(3,5); print "GET (3) - "; val := LFUCache.get(3); print "get(3) = "; print val; print "\n"; print "PUT (4, 6) - "; LFUCache.put(4,6); print "PUT (5, 7) - "; LFUCache.put(5,7); print "PUT (10, 100) - "; LFUCache.put(10,100); print "GET (2) - "; val := LFUCache.get(2); print "get(2) = "; print val; print "\n"; }
CS5232_Project_tmp_tmpai_cfrng_LFUSimple.dfy
011
011
Dafny program: 011
iterator Gen(start: int) yields (x: int) yield ensures |xs| <= 10 && x == start + |xs| - 1 { var i := 0; while i < 10 invariant |xs| == i { x := start + i; yield; i := i + 1; } } method Main() { var i := new Gen(30); while true { var m := i.MoveNext(); if (!m) {break; } print i.x; } }
iterator Gen(start: int) yields (x: int) yield ensures |xs| <= 10 && x == start + |xs| - 1 { var i := 0; while i < 10 invariant |xs| == i { x := start + i; yield; i := i + 1; } } method Main() { var i := new Gen(30); while true invariant i.Valid() && fresh(i._new) decreases 10 - |i.xs| { var m := i.MoveNext(); if (!m) {break; } print i.x; } }
CS5232_Project_tmp_tmpai_cfrng_test.dfy
014
014
Dafny program: 014
method Max (x: nat, y:nat) returns (r:nat) ensures (r >= x && r >=y) ensures (r == x || r == y) { if (x >= y) { r := x;} else { r := y;} } method Test () { var result := Max(42, 73); } method m1 (x: int, y: int) returns (z: int) requires 0 < x < y ensures z >= 0 && z <= y && z != x { //assume 0 < x < y z := 0; } function fib (n: nat) : nat { if n == 0 then 1 else if n == 1 then 1 else fib(n -1) + fib (n-2) } method Fib (n: nat) returns (r:nat) ensures r == fib(n) { if (n == 0) { return 1; } r := 1; var next:=2; var i := 1; while i < n { var tmp:=next; next:= next + r; r:= tmp; i:= i + 1; } return r; } datatype List<T> = Nil | Cons(head: T, tail: List<T>) function add(l:List<int>) : int { match l case Nil => 0 case Cons(x, xs) => x + add(xs) } method addImp (l: List<int>) returns (s: int) ensures s == add(l) { var ll := l; s := 0; while ll != Nil { s := s + ll.head; ll:= ll.tail; } } method MaxA (a: array<int>) returns (m: int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> a[i] <= m ensures exists i :: 0 <= i < a.Length && a[i] == m { m := a[0]; var i := 1; while i< a.Length { if a[i] > m { m:= a[i]; } i := i +1; } }
method Max (x: nat, y:nat) returns (r:nat) ensures (r >= x && r >=y) ensures (r == x || r == y) { if (x >= y) { r := x;} else { r := y;} } method Test () { var result := Max(42, 73); assert result == 73; } method m1 (x: int, y: int) returns (z: int) requires 0 < x < y ensures z >= 0 && z <= y && z != x { //assume 0 < x < y z := 0; } function fib (n: nat) : nat { if n == 0 then 1 else if n == 1 then 1 else fib(n -1) + fib (n-2) } method Fib (n: nat) returns (r:nat) ensures r == fib(n) { if (n == 0) { return 1; } r := 1; var next:=2; var i := 1; while i < n invariant 1 <= i <= n invariant r == fib(i) invariant next == fib(i+1) { var tmp:=next; next:= next + r; r:= tmp; i:= i + 1; } assert r == fib(n); return r; } datatype List<T> = Nil | Cons(head: T, tail: List<T>) function add(l:List<int>) : int { match l case Nil => 0 case Cons(x, xs) => x + add(xs) } method addImp (l: List<int>) returns (s: int) ensures s == add(l) { var ll := l; s := 0; while ll != Nil decreases ll invariant add(l) == s + add(ll) { s := s + ll.head; ll:= ll.tail; } assert s == add(l); } method MaxA (a: array<int>) returns (m: int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> a[i] <= m ensures exists i :: 0 <= i < a.Length && a[i] == m { m := a[0]; var i := 1; while i< a.Length invariant 1 <= i <= a.Length invariant forall j :: 0 <= j < i ==> a[j] <=m invariant exists j :: 0 <= j < i && a[j] ==m { if a[i] > m { m:= a[i]; } i := i +1; } }
CVS-Projto1_tmp_tmpb1o0bu8z_Hoare.dfy
016
016
Dafny program: 016
//Exercicio 1.a) function sum (a:array<int>, i:int, j:int) :int reads a requires 0 <= i <= j <= a.Length { if i == j then 0 else a[j-1] + sum(a, i, j-1) } //Exercicio 1.b) method query (a:array<int>, i:int, j:int) returns (s:int) requires 0 <= i <= j <= a.Length ensures s == sum(a, i, j) { s := 0; var aux := i; while (aux < j) { s := s + a[aux]; aux := aux + 1; } return s; } //Exercicio 1.c) lemma queryLemma(a:array<int>, i:int, j:int, k:int) requires 0 <= i <= k <= j <= a.Length ensures sum(a,i,k) + sum(a,k,j) == sum(a,i,j) { } method queryFast (a:array<int>, c:array<int>, i:int, j:int) returns (r:int) requires is_prefix_sum_for(a,c) && 0 <= i <= j <= a.Length < c.Length ensures r == sum(a, i,j) { r := c[j] - c[i]; queryLemma(a,0,j,i); return r; } predicate is_prefix_sum_for (a:array<int>, c:array<int>) reads c, a { a.Length + 1 == c.Length && c[0] == 0 && forall j :: 1 <= j <= a.Length ==> c[j] == sum(a,0,j) } ///Exercicio 2. datatype List<T> = Nil | Cons(head: T, tail: List<T>) method from_array<T>(a: array<T>) returns (l: List<T>) requires a.Length > 0 ensures forall j::0 <= j < a.Length ==> mem(a[j],l) { var i:= a.Length-1; l:= Nil; while (i >= 0) { l := Cons(a[i], l); i := i - 1; } return l; } function mem<T(==)> (x: T, l:List<T>) : bool { match l case Nil => false case Cons(y,r)=> if (x==y) then true else mem(x,r) }
//Exercicio 1.a) function sum (a:array<int>, i:int, j:int) :int decreases j reads a requires 0 <= i <= j <= a.Length { if i == j then 0 else a[j-1] + sum(a, i, j-1) } //Exercicio 1.b) method query (a:array<int>, i:int, j:int) returns (s:int) requires 0 <= i <= j <= a.Length ensures s == sum(a, i, j) { s := 0; var aux := i; while (aux < j) invariant i <= aux <= j invariant s == sum(a, i, aux) decreases j - aux { s := s + a[aux]; aux := aux + 1; } return s; } //Exercicio 1.c) lemma queryLemma(a:array<int>, i:int, j:int, k:int) requires 0 <= i <= k <= j <= a.Length ensures sum(a,i,k) + sum(a,k,j) == sum(a,i,j) { } method queryFast (a:array<int>, c:array<int>, i:int, j:int) returns (r:int) requires is_prefix_sum_for(a,c) && 0 <= i <= j <= a.Length < c.Length ensures r == sum(a, i,j) { r := c[j] - c[i]; queryLemma(a,0,j,i); return r; } predicate is_prefix_sum_for (a:array<int>, c:array<int>) reads c, a { a.Length + 1 == c.Length && c[0] == 0 && forall j :: 1 <= j <= a.Length ==> c[j] == sum(a,0,j) } ///Exercicio 2. datatype List<T> = Nil | Cons(head: T, tail: List<T>) method from_array<T>(a: array<T>) returns (l: List<T>) requires a.Length > 0 ensures forall j::0 <= j < a.Length ==> mem(a[j],l) { var i:= a.Length-1; l:= Nil; while (i >= 0) invariant -1 <= i < a. Length invariant forall j:: i+1 <= j < a.Length ==> mem(a[j],l) { l := Cons(a[i], l); i := i - 1; } return l; } function mem<T(==)> (x: T, l:List<T>) : bool decreases l { match l case Nil => false case Cons(y,r)=> if (x==y) then true else mem(x,r) }
CVS-Projto1_tmp_tmpb1o0bu8z_proj1_proj1.dfy
018
018
Dafny program: 018
/* Cumulative Sums over Arrays */ /* Daniel Cavalheiro 57869 Pedro Nunes 57854 */ //(a) function sum(a: array<int>, i: int, j: int): int reads a requires 0 <= i <= j <= a.Length { if (i == j) then 0 else a[i] + sum(a, i+1, j) } //(b) method query(a: array<int>, i: int, j: int) returns (res:int) requires 0 <= i <= j <= a.Length ensures res == sum(a, i, j) { res := 0; var k := i; while(k < j) { res := res + a[k]; k := k + 1; } } //(c) predicate is_prefix_sum_for (a: array<int>, c: array<int>) requires a.Length + 1 == c.Length requires c[0] == 0 reads c, a { forall i: int :: 0 <= i < a.Length ==> c[i+1] == c[i] + a[i] } lemma aux(a: array<int>, c: array<int>, i: int, j: int) requires 0 <= i <= j <= a.Length requires a.Length + 1 == c.Length requires c[0] == 0 requires is_prefix_sum_for(a, c) ensures forall k: int :: i <= k <= j ==> sum(a, i, k) + sum(a, k, j) == c[k] - c[i] + c[j] - c[k] //sum(a, i, j) == c[j] - c[i] {} method queryFast(a: array<int>, c: array<int>, i: int, j: int) returns (r: int) requires a.Length + 1 == c.Length && c[0] == 0 requires 0 <= i <= j <= a.Length requires is_prefix_sum_for(a,c) ensures r == sum(a, i, j) { aux(a, c, i, j); r := c[j] - c[i]; } method Main() { var x := new int[10]; x[0], x[1], x[2], x[3] := 2, 2, 1, 5; var y := sum(x, 0, x.Length); //assert y == 10; var c := new int[11]; c[0], c[1], c[2], c[3], c[4] := 0, 2, 4, 5, 10; // var r := queryFast(x, c, 0, x.Length); }
/* Cumulative Sums over Arrays */ /* Daniel Cavalheiro 57869 Pedro Nunes 57854 */ //(a) function sum(a: array<int>, i: int, j: int): int reads a requires 0 <= i <= j <= a.Length decreases j - i { if (i == j) then 0 else a[i] + sum(a, i+1, j) } //(b) method query(a: array<int>, i: int, j: int) returns (res:int) requires 0 <= i <= j <= a.Length ensures res == sum(a, i, j) { res := 0; var k := i; while(k < j) invariant i <= k <= j <= a.Length invariant res + sum(a, k, j) == sum(a, i, j) { res := res + a[k]; k := k + 1; } } //(c) predicate is_prefix_sum_for (a: array<int>, c: array<int>) requires a.Length + 1 == c.Length requires c[0] == 0 reads c, a { forall i: int :: 0 <= i < a.Length ==> c[i+1] == c[i] + a[i] } lemma aux(a: array<int>, c: array<int>, i: int, j: int) requires 0 <= i <= j <= a.Length requires a.Length + 1 == c.Length requires c[0] == 0 requires is_prefix_sum_for(a, c) decreases j - i ensures forall k: int :: i <= k <= j ==> sum(a, i, k) + sum(a, k, j) == c[k] - c[i] + c[j] - c[k] //sum(a, i, j) == c[j] - c[i] {} method queryFast(a: array<int>, c: array<int>, i: int, j: int) returns (r: int) requires a.Length + 1 == c.Length && c[0] == 0 requires 0 <= i <= j <= a.Length requires is_prefix_sum_for(a,c) ensures r == sum(a, i, j) { aux(a, c, i, j); r := c[j] - c[i]; } method Main() { var x := new int[10]; x[0], x[1], x[2], x[3] := 2, 2, 1, 5; var y := sum(x, 0, x.Length); //assert y == 10; var c := new int[11]; c[0], c[1], c[2], c[3], c[4] := 0, 2, 4, 5, 10; // var r := queryFast(x, c, 0, x.Length); }
CVS-handout1_tmp_tmptm52no3k_1.dfy
019
019
Dafny program: 019
/* Functional Lists and Imperative Arrays */ /* Daniel Cavalheiro 57869 Pedro Nunes 57854 */ datatype List<T> = Nil | Cons(head: T, tail: List<T>) function length<T>(l: List<T>): nat { match l case Nil => 0 case Cons(_, t) => 1 + length(t) } predicate mem<T(==)> (l: List<T>, x: T) { match l case Nil => false case Cons(h, t) => if(h == x) then true else mem(t, x) } function at<T>(l: List<T>, i: nat): T requires i < length(l) { if i == 0 then l.head else at(l.tail, i - 1) } method from_array<T>(a: array<T>) returns (l: List<T>) requires a.Length >= 0 ensures length(l) == a.Length ensures forall i: int :: 0 <= i < length(l) ==> at(l, i) == a[i] ensures forall x :: mem(l, x) ==> exists i: int :: 0 <= i < length(l) && a[i] == x { l := Nil; var i: int := a.Length - 1; while(i >= 0) { l := Cons(a[i], l); i := i-1; } } method Main() { var l: List<int> := List.Cons(1, List.Cons(2, List.Cons(3, Nil))); var arr: array<int> := new int [3](i => i + 1); var t: List<int> := from_array(arr); print l; print "\n"; print t; print "\n"; print t == l; }
/* Functional Lists and Imperative Arrays */ /* Daniel Cavalheiro 57869 Pedro Nunes 57854 */ datatype List<T> = Nil | Cons(head: T, tail: List<T>) function length<T>(l: List<T>): nat { match l case Nil => 0 case Cons(_, t) => 1 + length(t) } predicate mem<T(==)> (l: List<T>, x: T) { match l case Nil => false case Cons(h, t) => if(h == x) then true else mem(t, x) } function at<T>(l: List<T>, i: nat): T requires i < length(l) { if i == 0 then l.head else at(l.tail, i - 1) } method from_array<T>(a: array<T>) returns (l: List<T>) requires a.Length >= 0 ensures length(l) == a.Length ensures forall i: int :: 0 <= i < length(l) ==> at(l, i) == a[i] ensures forall x :: mem(l, x) ==> exists i: int :: 0 <= i < length(l) && a[i] == x { l := Nil; var i: int := a.Length - 1; while(i >= 0) invariant -1 <= i <= a.Length - 1 invariant length(l) == a.Length - 1 - i invariant forall j: int :: i < j < a.Length ==> at(l,j-i-1) == a[j] invariant forall x :: mem(l, x) ==> exists k: int :: i < k < a.Length && a[k] == x { l := Cons(a[i], l); i := i-1; } } method Main() { var l: List<int> := List.Cons(1, List.Cons(2, List.Cons(3, Nil))); var arr: array<int> := new int [3](i => i + 1); var t: List<int> := from_array(arr); print l; print "\n"; print t; print "\n"; print t == l; }
CVS-handout1_tmp_tmptm52no3k_2.dfy
021
021
Dafny program: 021
method allDigits(s: string) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |s| ==> s[i] in "0123456789") { result:=true ; for i := 0 to |s| { if ! (s[i] in "0123456789"){ return false; } } }
method allDigits(s: string) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |s| ==> s[i] in "0123456789") { result:=true ; for i := 0 to |s| invariant result <==> (forall ii :: 0 <= ii < i ==> s[ii] in "0123456789") { if ! (s[i] in "0123456789"){ return false; } } }
Clover_all_digits.dfy
022
022
Dafny program: 022
method append(a:array<int>, b:int) returns (c:array<int>) ensures a[..] + [b] == c[..] { c := new int[a.Length+1]; var i:= 0; while (i < a.Length) { c[i] := a[i]; i:=i+1; } c[a.Length]:=b; }
method append(a:array<int>, b:int) returns (c:array<int>) ensures a[..] + [b] == c[..] { c := new int[a.Length+1]; var i:= 0; while (i < a.Length) invariant 0 <= i <= a.Length invariant forall ii::0<=ii<i ==> c[ii]==a[ii] { c[i] := a[i]; i:=i+1; } c[a.Length]:=b; }
Clover_array_append.dfy
023
023
Dafny program: 023
method concat(a:array<int>, b:array<int>) returns (c:array<int>) ensures c.Length==b.Length+a.Length ensures forall k :: 0 <= k < a.Length ==> c[k] == a[k] ensures forall k :: 0 <= k < b.Length ==> c[k+a.Length] == b[k] { c := new int[a.Length+b.Length]; var i:= 0; while (i < c.Length) { c[i] := if i<a.Length then a[i] else b[i-a.Length]; i:=i+1; } }
method concat(a:array<int>, b:array<int>) returns (c:array<int>) ensures c.Length==b.Length+a.Length ensures forall k :: 0 <= k < a.Length ==> c[k] == a[k] ensures forall k :: 0 <= k < b.Length ==> c[k+a.Length] == b[k] { c := new int[a.Length+b.Length]; var i:= 0; while (i < c.Length) invariant 0 <= i <= c.Length invariant if i<a.Length then c[..i]==a[..i] else c[..i]==a[..]+b[..(i-a.Length)] { c[i] := if i<a.Length then a[i] else b[i-a.Length]; i:=i+1; } }
Clover_array_concat.dfy
024
024
Dafny program: 024
method iter_copy<T(0)>(s: array<T>) returns (t: array<T>) ensures s.Length==t.Length ensures forall i::0<=i<s.Length ==> s[i]==t[i] { t := new T[s.Length]; var i:= 0; while (i < s.Length) { t[i] := s[i]; i:=i+1; } }
method iter_copy<T(0)>(s: array<T>) returns (t: array<T>) ensures s.Length==t.Length ensures forall i::0<=i<s.Length ==> s[i]==t[i] { t := new T[s.Length]; var i:= 0; while (i < s.Length) invariant 0 <= i <= s.Length invariant forall x :: 0 <= x < i ==> s[x] == t[x] { t[i] := s[i]; i:=i+1; } }
Clover_array_copy.dfy
025
025
Dafny program: 025
method arrayProduct(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] * b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length { c[i]:=a[i]*b[i]; i:=i+1; } }
method arrayProduct(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] * b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j:: 0 <= j< i==> a[j] * b[j]==c[j] { c[i]:=a[i]*b[i]; i:=i+1; } }
Clover_array_product.dfy
026
026
Dafny program: 026
method arraySum(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] + b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length { c[i]:=a[i]+b[i]; i:=i+1; } }
method arraySum(a: array<int>, b: array<int>) returns (c: array<int> ) requires a.Length==b.Length ensures c.Length==a.Length ensures forall i:: 0 <= i< a.Length==> a[i] + b[i]==c[i] { c:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j:: 0 <= j< i==> a[j] + b[j]==c[j] { c[i]:=a[i]+b[i]; i:=i+1; } }
Clover_array_sum.dfy
028
028
Dafny program: 028
method below_zero(operations: seq<int>) returns (s:array<int>, result:bool) ensures s.Length == |operations| + 1 ensures s[0]==0 ensures forall i :: 0 <= i < s.Length-1 ==> s[i+1]==s[i]+operations[i] ensures result == true ==> (exists i :: 1 <= i <= |operations| && s[i] < 0) ensures result == false ==> forall i :: 0 <= i < s.Length ==> s[i] >= 0 { result := false; s := new int[|operations| + 1]; var i := 0; s[i] := 0; while i < s.Length { if i>0{ s[i] := s[i - 1] + operations[i - 1]; } i := i + 1; } i:=0; while i < s.Length { if s[i] < 0 { result := true; return; } i := i + 1; } }
method below_zero(operations: seq<int>) returns (s:array<int>, result:bool) ensures s.Length == |operations| + 1 ensures s[0]==0 ensures forall i :: 0 <= i < s.Length-1 ==> s[i+1]==s[i]+operations[i] ensures result == true ==> (exists i :: 1 <= i <= |operations| && s[i] < 0) ensures result == false ==> forall i :: 0 <= i < s.Length ==> s[i] >= 0 { result := false; s := new int[|operations| + 1]; var i := 0; s[i] := 0; while i < s.Length invariant 0 <= i <= s.Length invariant s[0]==0 invariant s.Length == |operations| + 1 invariant forall x :: 0 <= x < i-1 ==> s[x+1]==s[x]+operations[x] { if i>0{ s[i] := s[i - 1] + operations[i - 1]; } i := i + 1; } i:=0; while i < s.Length invariant 0 <= i <= s.Length invariant forall x :: 0 <= x < i ==> s[x] >= 0 { if s[i] < 0 { result := true; return; } i := i + 1; } }
Clover_below_zero.dfy
029
029
Dafny program: 029
method BinarySearch(a: array<int>, key: int) returns (n: int) requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] ensures 0<= n <=a.Length ensures forall i :: 0<= i < n ==> a[i] < key ensures n == a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] < key ensures forall i :: n<= i < a.Length ==> a[i]>=key { var lo, hi := 0, a.Length; while lo<hi { var mid := (lo + hi) / 2; if a[mid] < key { lo := mid + 1; } else { hi := mid; } } n:=lo; }
method BinarySearch(a: array<int>, key: int) returns (n: int) requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] ensures 0<= n <=a.Length ensures forall i :: 0<= i < n ==> a[i] < key ensures n == a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] < key ensures forall i :: n<= i < a.Length ==> a[i]>=key { var lo, hi := 0, a.Length; while lo<hi invariant 0<= lo <= hi <= a.Length invariant forall i :: 0<=i<lo ==> a[i] < key invariant forall i :: hi<=i<a.Length ==> a[i] >= key { var mid := (lo + hi) / 2; if a[mid] < key { lo := mid + 1; } else { hi := mid; } } n:=lo; }
Clover_binary_search.dfy
030
030
Dafny program: 030
method BubbleSort(a: array<int>) modifies a ensures forall i,j::0<= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..])==multiset(old(a[..])) { var i := a.Length - 1; while (i > 0) { var j := 0; while (j < i) { if (a[j] > a[j + 1]) { a[j], a[j + 1] := a[j + 1], a[j]; } j := j + 1; } i := i - 1; } }
method BubbleSort(a: array<int>) modifies a ensures forall i,j::0<= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..])==multiset(old(a[..])) { var i := a.Length - 1; while (i > 0) invariant i < 0 ==> a.Length == 0 invariant -1 <= i < a.Length invariant forall ii,jj::i <= ii< jj <a.Length ==> a[ii] <= a[jj] invariant forall k,k'::0<=k<=i<k'<a.Length==>a[k]<=a[k'] invariant multiset(a[..])==multiset(old(a[..])) { var j := 0; while (j < i) invariant 0 < i < a.Length && 0 <= j <= i invariant forall ii,jj::i<= ii <= jj <a.Length ==> a[ii] <= a[jj] invariant forall k, k'::0<=k<=i<k'<a.Length==>a[k]<=a[k'] invariant forall k :: 0 <= k <= j ==> a[k] <= a[j] invariant multiset(a[..])==multiset(old(a[..])) { if (a[j] > a[j + 1]) { a[j], a[j + 1] := a[j + 1], a[j]; } j := j + 1; } i := i - 1; } }
Clover_bubble_sort.dfy
031
031
Dafny program: 031
method CalDiv() returns (x:int, y:int) ensures x==191/7 ensures y==191%7 { x, y := 0, 191; while 7 <= y { x := x+1; y:=191-7*x; } }
method CalDiv() returns (x:int, y:int) ensures x==191/7 ensures y==191%7 { x, y := 0, 191; while 7 <= y invariant 0 <= y && 7 * x + y == 191 { x := x+1; y:=191-7*x; } }
Clover_cal_ans.dfy
032
032
Dafny program: 032
method Sum(N:int) returns (s:int) requires N >= 0 ensures s == N * (N + 1) / 2 { var n := 0; s := 0; while n != N { n := n + 1; s := s + n; } }
method Sum(N:int) returns (s:int) requires N >= 0 ensures s == N * (N + 1) / 2 { var n := 0; s := 0; while n != N invariant 0 <= n <= N invariant s == n * (n + 1) / 2 { n := n + 1; s := s + n; } }
Clover_cal_sum.dfy
033
033
Dafny program: 033
method CanyonSearch(a: array<int>, b: array<int>) returns (d:nat) requires a.Length !=0 && b.Length!=0 requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] requires forall i,j :: 0<=i<j<b.Length ==> b[i]<=b[j] ensures exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) ensures forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) { var m,n:=0,0; d:=if a[0] < b[0] then (b[0]-a[0]) else (a[0]-b[0]); while m<a.Length && n<b.Length { var t := if a[m] < b[n] then (b[n]-a[m]) else (a[m]-b[n]); d:=if t<d then t else d; if case a[m]<=b[n] => m:=m+1; case b[n]<=a[m] => n:=n+1; } }
method CanyonSearch(a: array<int>, b: array<int>) returns (d:nat) requires a.Length !=0 && b.Length!=0 requires forall i,j :: 0<=i<j<a.Length ==> a[i]<=a[j] requires forall i,j :: 0<=i<j<b.Length ==> b[i]<=b[j] ensures exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) ensures forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) { var m,n:=0,0; d:=if a[0] < b[0] then (b[0]-a[0]) else (a[0]-b[0]); while m<a.Length && n<b.Length invariant 0<=m<=a.Length && 0<=n<=b.Length decreases a.Length -m+b.Length-n invariant exists i,j:: 0<=i<a.Length && 0<=j<b.Length && d==if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]) invariant forall i,j:: 0<=i<a.Length && 0<=j<b.Length ==> d<=(if a[i] < b[j] then (b[j]-a[i]) else (a[i]-b[j]))|| (m<=i&&n<=j) { var t := if a[m] < b[n] then (b[n]-a[m]) else (a[m]-b[n]); d:=if t<d then t else d; if case a[m]<=b[n] => m:=m+1; case b[n]<=a[m] => n:=n+1; } }
Clover_canyon_search.dfy
036
036
Dafny program: 036
method copy( src: array<int>, sStart: nat, dest: array<int>, dStart: nat, len: nat) returns (r: array<int>) requires src.Length >= sStart + len requires dest.Length >= dStart + len ensures r.Length == dest.Length ensures r[..dStart] == dest[..dStart] ensures r[dStart + len..] == dest[dStart + len..] ensures r[dStart..len+dStart] == src[sStart..len+sStart] { if len == 0 { return dest; } var i: nat := 0; r := new int[dest.Length]; while (i < r.Length) { r[i] := dest[i]; i := i + 1; } i := 0; while (i < len) { r[dStart + i] := src[sStart + i]; i := i + 1; } }
method copy( src: array<int>, sStart: nat, dest: array<int>, dStart: nat, len: nat) returns (r: array<int>) requires src.Length >= sStart + len requires dest.Length >= dStart + len ensures r.Length == dest.Length ensures r[..dStart] == dest[..dStart] ensures r[dStart + len..] == dest[dStart + len..] ensures r[dStart..len+dStart] == src[sStart..len+sStart] { if len == 0 { return dest; } var i: nat := 0; r := new int[dest.Length]; while (i < r.Length) invariant i <= r.Length invariant r[..i] == dest[..i] { r[i] := dest[i]; i := i + 1; } assert r[..]==dest[..]; i := 0; while (i < len) invariant i <= len invariant r[..dStart] == dest[..dStart] invariant r[(dStart + len)..] == dest[(dStart + len)..] invariant r[dStart .. dStart + i] == src[sStart .. sStart + i] { assert r[(dStart + len)..] == dest[(dStart + len)..]; r[dStart + i] := src[sStart + i]; i := i + 1; } }
Clover_copy_part.dfy
037
037
Dafny program: 037
method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) ensures count == |set i | i in numbers && i < threshold| { count := 0; var shrink := numbers; var grow := {}; while |shrink | > 0 { var i: int :| i in shrink; shrink := shrink - {i}; var grow' := grow+{i}; grow := grow + {i}; if i < threshold { count := count + 1; } } }
method CountLessThan(numbers: set<int>, threshold: int) returns (count: int) ensures count == |set i | i in numbers && i < threshold| { count := 0; var shrink := numbers; var grow := {}; while |shrink | > 0 decreases shrink invariant shrink + grow == numbers invariant grow !! shrink invariant count == |set i | i in grow && i < threshold| { var i: int :| i in shrink; shrink := shrink - {i}; var grow' := grow+{i}; assert (set i | i in grow' && i < threshold) == (set i | i in grow && i < threshold )+ if i < threshold then {i} else {}; grow := grow + {i}; if i < threshold { count := count + 1; } } }
Clover_count_lessthan.dfy
038
038
Dafny program: 038
method double_array_elements(s: array<int>) modifies s ensures forall i :: 0 <= i < s.Length ==> s[i] == 2 * old(s[i]) { var i:= 0; while (i < s.Length) { s[i] := 2 * s[i]; i := i + 1; } }
method double_array_elements(s: array<int>) modifies s ensures forall i :: 0 <= i < s.Length ==> s[i] == 2 * old(s[i]) { var i:= 0; while (i < s.Length) invariant 0 <= i <= s.Length invariant forall x :: i <= x < s.Length ==> s[x] == old(s[x]) invariant forall x :: 0 <= x < i ==> s[x] == 2 * old(s[x]) { s[i] := 2 * s[i]; i := i + 1; } }
Clover_double_array_elements.dfy
040
040
Dafny program: 040
method FindEvenNumbers (arr: array<int>) returns (evenNumbers: array<int>) ensures forall x {:trigger (x%2) }:: x in arr[..] && (x%2==0)==> x in evenNumbers[..] ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..] ensures forall k :: 0 <= k < evenNumbers.Length ==> evenNumbers[k] % 2 == 0 ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==> exists n, m :: 0 <= n < m < arr.Length && evenNumbers[k] == arr[n] && evenNumbers[l] == arr[m] { var evenList: seq<int> := []; ghost var indices: seq<int> := []; for i := 0 to arr.Length { if arr[i]%2==0 { evenList := evenList + [arr[i]]; indices := indices + [i]; } } evenNumbers := new int[|evenList|](i requires 0 <= i < |evenList| => evenList[i]); }
method FindEvenNumbers (arr: array<int>) returns (evenNumbers: array<int>) ensures forall x {:trigger (x%2) }:: x in arr[..] && (x%2==0)==> x in evenNumbers[..] ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..] ensures forall k :: 0 <= k < evenNumbers.Length ==> evenNumbers[k] % 2 == 0 ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==> exists n, m :: 0 <= n < m < arr.Length && evenNumbers[k] == arr[n] && evenNumbers[l] == arr[m] { var evenList: seq<int> := []; ghost var indices: seq<int> := []; for i := 0 to arr.Length invariant 0 <= i <= arr.Length invariant 0 <= |evenList| <= i invariant forall x {:trigger (x%2) }:: (x in arr[..i] && (x%2==0) )==> x in evenList[..] invariant forall k :: 0 <= k < |evenList| ==> evenList[k] % 2 == 0 invariant forall x :: x !in arr[..i] ==> x !in evenList invariant |evenList| == |indices| invariant forall k :: 0 <= k < |indices| ==> indices[k] < i invariant forall k, l :: 0 <= k < l < |indices| ==> indices[k] < indices[l] invariant forall k :: 0 <= k < |evenList| ==> 0 <= indices[k] < i <= arr.Length && arr[indices[k]] == evenList[k] { if arr[i]%2==0 { evenList := evenList + [arr[i]]; indices := indices + [i]; } } evenNumbers := new int[|evenList|](i requires 0 <= i < |evenList| => evenList[i]); assert evenList == evenNumbers[..]; }
Clover_even_list.dfy
041
041
Dafny program: 041
method Find(a: array<int>, key: int) returns (index: int) ensures -1<=index<a.Length ensures index!=-1 ==> a[index]==key && (forall i :: 0 <= i < index ==> a[i] != key) ensures index == -1 ==> (forall i::0 <= i < a.Length ==> a[i] != key) { index := 0; while index < a.Length { if a[index] == key { return; } index := index + 1; } if index >= a.Length { index := -1; } }
method Find(a: array<int>, key: int) returns (index: int) ensures -1<=index<a.Length ensures index!=-1 ==> a[index]==key && (forall i :: 0 <= i < index ==> a[i] != key) ensures index == -1 ==> (forall i::0 <= i < a.Length ==> a[i] != key) { index := 0; while index < a.Length invariant 0<=index<=a.Length invariant (forall i::0 <= i < index==>a[i] != key) { if a[index] == key { return; } index := index + 1; } if index >= a.Length { index := -1; } }
Clover_find.dfy
042
042
Dafny program: 042
method has_close_elements(numbers: seq<real>, threshold: real) returns (res: bool) requires threshold >= 0.0 ensures res ==> exists i: int, j: int :: 0 <= i < |numbers| && 0 <= j < |numbers| && i != j && (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) < threshold ensures !res ==> (forall i: int, j: int :: 1 <= i < |numbers| && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold) { res := false; var idx: int := 0; while idx < |numbers| && !res { var idx2: int := 0; while idx2 < idx && !res { var distance := (if numbers[idx2] - numbers[idx] < 0.0 then numbers[idx] - numbers[idx2] else numbers[idx2] - numbers[idx]); if distance < threshold { res := true; return; } idx2 := idx2 + 1; } idx := idx + 1; } }
method has_close_elements(numbers: seq<real>, threshold: real) returns (res: bool) requires threshold >= 0.0 ensures res ==> exists i: int, j: int :: 0 <= i < |numbers| && 0 <= j < |numbers| && i != j && (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) < threshold ensures !res ==> (forall i: int, j: int :: 1 <= i < |numbers| && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold) { res := false; var idx: int := 0; while idx < |numbers| && !res invariant 0 <= idx <= |numbers| invariant !res invariant forall i: int, j: int :: 0 <= i < idx && 0 <= j < i ==> (if numbers[i] - numbers[j] < 0.0 then numbers[j] - numbers[i] else numbers[i] - numbers[j]) >= threshold { var idx2: int := 0; while idx2 < idx && !res invariant 0 <= idx <= |numbers| invariant 0 <= idx2 <= idx invariant !res invariant forall j: int :: 0 <= j < idx2 ==> (if numbers[idx] - numbers[j] < 0.0 then numbers[j] - numbers[idx] else numbers[idx] - numbers[j]) >= threshold { var distance := (if numbers[idx2] - numbers[idx] < 0.0 then numbers[idx] - numbers[idx2] else numbers[idx2] - numbers[idx]); if distance < threshold { res := true; return; } idx2 := idx2 + 1; } idx := idx + 1; } }
Clover_has_close_elements.dfy
043
043
Dafny program: 043
method insert(line:array<char>, l:int, nl:array<char>, p:int, at:int) requires 0 <= l+p <= line.Length requires 0 <= p <= nl.Length requires 0 <= at <= l modifies line ensures forall i :: (0<=i<p) ==> line[at+i] == nl[i] ensures forall i :: (0<=i<at) ==> line[i] == old(line[i]) ensures forall i :: (at+p<=i<l+p) ==> line[i] == old(line[i-p]) { ghost var initialLine := line[..]; var i:int := l; while(i>at) { i := i - 1; line[i+p] := line[i]; } i := 0; while(i<p) { line[at + i] := nl[i]; i := i + 1; } }
method insert(line:array<char>, l:int, nl:array<char>, p:int, at:int) requires 0 <= l+p <= line.Length requires 0 <= p <= nl.Length requires 0 <= at <= l modifies line ensures forall i :: (0<=i<p) ==> line[at+i] == nl[i] ensures forall i :: (0<=i<at) ==> line[i] == old(line[i]) ensures forall i :: (at+p<=i<l+p) ==> line[i] == old(line[i-p]) { ghost var initialLine := line[..]; var i:int := l; while(i>at) invariant line[0..i] == initialLine[0..i] invariant line[i+p..l+p] == initialLine[i..l] invariant at<=i<=l { i := i - 1; line[i+p] := line[i]; } assert line[0..at] == initialLine[0..at]; assert line[at+p..l+p] == initialLine[at..l]; i := 0; while(i<p) invariant 0<=i<=p invariant line[0..at] == initialLine[0..at] invariant line[at..at+i] == nl[0..i] invariant line[at+p..l+p] == initialLine[at..l] { line[at + i] := nl[i]; i := i + 1; } assert line[0..at] == initialLine[0..at]; assert line[at..at+p] == nl[0..p]; assert line[at+p..l+p] == initialLine[at..l]; }
Clover_insert.dfy
044
044
Dafny program: 044
method SquareRoot(N:nat) returns (r:nat) ensures r*r <= N < (r+1)*(r+1) { r:=0; while (r+1)*(r+1)<=N { r:=r+1; } }
method SquareRoot(N:nat) returns (r:nat) ensures r*r <= N < (r+1)*(r+1) { r:=0; while (r+1)*(r+1)<=N invariant r*r<=N { r:=r+1; } }
Clover_integer_square_root.dfy
046
046
Dafny program: 046
method IsPalindrome(x: seq<char>) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |x| ==> x[i] == x[|x| - i - 1]) { if |x|==0 { return true; } var i := 0; var j := |x| - 1; result := true; while (i < j) { if x[i] != x[j] { result := false; return; } i := i + 1; j := j - 1; } }
method IsPalindrome(x: seq<char>) returns (result: bool) ensures result <==> (forall i :: 0 <= i < |x| ==> x[i] == x[|x| - i - 1]) { if |x|==0 { return true; } var i := 0; var j := |x| - 1; result := true; while (i < j) invariant 0<=i<=j+1 && 0<=j < |x| invariant i+j==|x|-1 invariant (forall k :: 0 <= k < i ==> x[k] == x[|x| - k - 1]) { if x[i] != x[j] { result := false; return; } i := i + 1; j := j - 1; } }
Clover_is_palindrome.dfy
047
047
Dafny program: 047
method LinearSearch(a: array<int>, e: int) returns (n:int) ensures 0<=n<=a.Length ensures n==a.Length || a[n]==e ensures forall i::0<=i < n ==> e!=a[i] { n :=0; while n!=a.Length { if e==a[n]{ return; } n:=n+1; } }
method LinearSearch(a: array<int>, e: int) returns (n:int) ensures 0<=n<=a.Length ensures n==a.Length || a[n]==e ensures forall i::0<=i < n ==> e!=a[i] { n :=0; while n!=a.Length invariant 0<=n<=a.Length invariant forall i::0<=i<n ==> e!=a[i] { if e==a[n]{ return; } n:=n+1; } }
Clover_linear_search1.dfy
048
048
Dafny program: 048
method LinearSearch(a: array<int>, e: int) returns (n:int) requires exists i::0<=i<a.Length && a[i]==e ensures 0<=n<a.Length && a[n]==e ensures forall k :: 0 <= k < n ==> a[k]!=e { n :=0; while n!=a.Length { if e==a[n]{ return; } n:=n+1; } }
method LinearSearch(a: array<int>, e: int) returns (n:int) requires exists i::0<=i<a.Length && a[i]==e ensures 0<=n<a.Length && a[n]==e ensures forall k :: 0 <= k < n ==> a[k]!=e { n :=0; while n!=a.Length invariant 0<=n<=a.Length invariant forall i::0<=i<n ==> e!=a[i] { if e==a[n]{ return; } n:=n+1; } }
Clover_linear_search2.dfy
049
049
Dafny program: 049
method LinearSearch3<T>(a: array<T>, P: T -> bool) returns (n: int) requires exists i :: 0 <= i < a.Length && P(a[i]) ensures 0 <= n < a.Length && P(a[n]) ensures forall k :: 0 <= k < n ==> !P(a[k]) { n := 0; while true { if P(a[n]) { return; } n := n + 1; } }
method LinearSearch3<T>(a: array<T>, P: T -> bool) returns (n: int) requires exists i :: 0 <= i < a.Length && P(a[i]) ensures 0 <= n < a.Length && P(a[n]) ensures forall k :: 0 <= k < n ==> !P(a[k]) { n := 0; while true invariant 0 <= n < a.Length invariant exists i :: n <= i < a.Length && P(a[i]) invariant forall k :: 0 <= k < n ==> !P(a[k]) decreases a.Length - n { if P(a[n]) { return; } n := n + 1; } }
Clover_linear_search3.dfy
050
050
Dafny program: 050
method LongestCommonPrefix(str1: seq<char>, str2: seq<char>) returns (prefix: seq<char>) ensures |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] ensures |prefix|==|str1| || |prefix|==|str2| || (str1[|prefix|]!=str2[|prefix|]) { prefix := []; var minLength := if |str1| <|str2| then |str1| else |str2|; for idx:= 0 to minLength { if str1[idx] != str2[idx] { return; } prefix := prefix + [str1[idx]]; } }
method LongestCommonPrefix(str1: seq<char>, str2: seq<char>) returns (prefix: seq<char>) ensures |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] ensures |prefix|==|str1| || |prefix|==|str2| || (str1[|prefix|]!=str2[|prefix|]) { prefix := []; var minLength := if |str1| <|str2| then |str1| else |str2|; for idx:= 0 to minLength invariant |prefix|==idx <= minLength<=|str1| && minLength<=|str2| invariant |prefix| <= |str1| && prefix == str1[0..|prefix|]&& |prefix| <= |str2| && prefix == str2[0..|prefix|] { if str1[idx] != str2[idx] { return; } prefix := prefix + [str1[idx]]; } }
Clover_longest_prefix.dfy
051
051
Dafny program: 051
method Match(s: string, p: string) returns (b: bool) requires |s| == |p| ensures b <==> forall n :: 0 <= n < |s| ==> s[n] == p[n] || p[n] == '?' { var i := 0; while i < |s| { if s[i] != p[i] && p[i] != '?' { return false; } i := i + 1; } return true; }
method Match(s: string, p: string) returns (b: bool) requires |s| == |p| ensures b <==> forall n :: 0 <= n < |s| ==> s[n] == p[n] || p[n] == '?' { var i := 0; while i < |s| invariant 0 <= i <= |s| invariant forall n :: 0 <= n < i ==> s[n] == p[n] || p[n] == '?' { if s[i] != p[i] && p[i] != '?' { return false; } i := i + 1; } return true; }
Clover_match.dfy
052
052
Dafny program: 052
method maxArray(a: array<int>) returns (m: int) requires a.Length >= 1 ensures forall k :: 0 <= k < a.Length ==> m >= a[k] ensures exists k :: 0 <= k < a.Length && m == a[k] { m := a[0]; var index := 1; while (index < a.Length) { m := if m>a[index] then m else a[index]; index := index + 1; } }
method maxArray(a: array<int>) returns (m: int) requires a.Length >= 1 ensures forall k :: 0 <= k < a.Length ==> m >= a[k] ensures exists k :: 0 <= k < a.Length && m == a[k] { m := a[0]; var index := 1; while (index < a.Length) invariant 0 <= index <= a.Length invariant forall k :: 0 <= k < index ==> m >= a[k] invariant exists k :: 0 <= k < index && m == a[k] decreases a.Length - index { m := if m>a[index] then m else a[index]; index := index + 1; } }
Clover_max_array.dfy
053
053
Dafny program: 053
method minArray(a: array<int>) returns (r:int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> r <= a[i] ensures exists i :: 0 <= i < a.Length && r == a[i] { r:=a[0]; var i:=1; while i<a.Length { if r>a[i]{ r:=a[i]; } i:=i+1; } }
method minArray(a: array<int>) returns (r:int) requires a.Length > 0 ensures forall i :: 0 <= i < a.Length ==> r <= a[i] ensures exists i :: 0 <= i < a.Length && r == a[i] { r:=a[0]; var i:=1; while i<a.Length invariant 0 <= i <= a.Length invariant forall x :: 0 <= x < i ==> r <= a[x] invariant exists x :: 0 <= x < i && r == a[x] { if r>a[i]{ r:=a[i]; } i:=i+1; } }
Clover_min_array.dfy
057
057
Dafny program: 057
method onlineMax(a: array<int>, x: int) returns (ghost m:int, p:int) requires 1<=x<a.Length requires a.Length!=0 ensures x<=p<a.Length ensures forall i::0<=i<x==> a[i]<=m ensures exists i::0<=i<x && a[i]==m ensures x<=p<a.Length-1 ==> (forall i::0<=i<p ==> a[i]<a[p]) ensures (forall i::x<=i<a.Length && a[i]<=m) ==> p==a.Length-1 { p:= 0; var best := a[0]; var i:=1; while i<x { if a[i]>best{ best:=a[i]; } i:=i+1; } m:=best; i:=x; while i<a.Length { if a[i]>best{ p:=i; return; } i:=i+1; } p:=a.Length-1; }
method onlineMax(a: array<int>, x: int) returns (ghost m:int, p:int) requires 1<=x<a.Length requires a.Length!=0 ensures x<=p<a.Length ensures forall i::0<=i<x==> a[i]<=m ensures exists i::0<=i<x && a[i]==m ensures x<=p<a.Length-1 ==> (forall i::0<=i<p ==> a[i]<a[p]) ensures (forall i::x<=i<a.Length && a[i]<=m) ==> p==a.Length-1 { p:= 0; var best := a[0]; var i:=1; while i<x invariant 0<=i<=x invariant forall j::0<=j<i==> a[j]<=best invariant exists j::0<=j<i && a[j]==best { if a[i]>best{ best:=a[i]; } i:=i+1; } m:=best; i:=x; while i<a.Length invariant x<=i<=a.Length invariant forall j::x<=j<i ==> a[j]<=m { if a[i]>best{ p:=i; return; } i:=i+1; } p:=a.Length-1; }
Clover_online_max.dfy
058
058
Dafny program: 058
method only_once<T(==)>(a: array<T>, key: T) returns (b:bool) ensures (multiset(a[..])[key] ==1 ) <==> b { var i := 0; b := false; var keyCount := 0; while i < a.Length { if (a[i] == key) { keyCount := keyCount + 1; } if (keyCount == 1) { b := true; } else { b := false; } i := i + 1; } }
method only_once<T(==)>(a: array<T>, key: T) returns (b:bool) ensures (multiset(a[..])[key] ==1 ) <==> b { var i := 0; b := false; var keyCount := 0; while i < a.Length invariant 0 <= i <= a.Length invariant multiset(a[..i])[key] == keyCount invariant b <==> (keyCount == 1) { if (a[i] == key) { keyCount := keyCount + 1; } if (keyCount == 1) { b := true; } else { b := false; } i := i + 1; } assert a[..a.Length] == a[..]; }
Clover_only_once.dfy
059
059
Dafny program: 059
method Quotient(x: nat, y:nat) returns (r:int, q:int) requires y != 0 ensures q * y + r == x && 0 <= r < y && 0 <= q { r:=x; q:=0; while y<=r { r:=r-y; q:=q+1; } }
method Quotient(x: nat, y:nat) returns (r:int, q:int) requires y != 0 ensures q * y + r == x && 0 <= r < y && 0 <= q { r:=x; q:=0; while y<=r invariant q*y+r==x && r>=0 decreases r { r:=r-y; q:=q+1; } }
Clover_quotient.dfy
060
060
Dafny program: 060
method remove_front(a:array<int>) returns (c:array<int>) requires a.Length>0 ensures a[1..] == c[..] { c := new int[a.Length-1]; var i:= 1; while (i < a.Length) { c[i-1] := a[i]; i:=i+1; } }
method remove_front(a:array<int>) returns (c:array<int>) requires a.Length>0 ensures a[1..] == c[..] { c := new int[a.Length-1]; var i:= 1; while (i < a.Length) invariant 1 <= i <= a.Length invariant forall ii::1<=ii<i ==> c[ii-1]==a[ii] { c[i-1] := a[i]; i:=i+1; } }
Clover_remove_front.dfy
061
061
Dafny program: 061
method replace(arr: array<int>, k: int) modifies arr ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) > k ==> arr[i] == -1 ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) <= k ==> arr[i] == old(arr[i]) { var i := 0; while i < arr.Length { if arr[i] > k { arr[i] := -1; } i := i + 1; } }
method replace(arr: array<int>, k: int) modifies arr ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) > k ==> arr[i] == -1 ensures forall i :: 0 <= i < arr.Length ==> old(arr[i]) <= k ==> arr[i] == old(arr[i]) { var i := 0; while i < arr.Length decreases arr.Length - i invariant 0 <= i <= arr.Length invariant forall j :: 0 <= j < i ==> old(arr[j]) > k ==> arr[j] == -1 invariant forall j :: 0 <= j < i ==> old(arr[j]) <= k ==> arr[j] == old(arr[j]) invariant forall j :: i <= j < arr.Length ==> old(arr[j]) == arr[j] { if arr[i] > k { arr[i] := -1; } i := i + 1; } }
Clover_replace.dfy
063
063
Dafny program: 063
method reverse(a: array<int>) modifies a ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[a.Length - 1 - i]) { var i := 0; while i <a.Length / 2 { a[i], a[a.Length-1-i] := a[a.Length-1-i], a[i]; i := i + 1; } }
method reverse(a: array<int>) modifies a ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[a.Length - 1 - i]) { var i := 0; while i <a.Length / 2 invariant 0 <= i <= a.Length/2 invariant forall k :: 0 <= k < i || a.Length-1-i < k <= a.Length-1 ==> a[k] == old(a[a.Length-1-k]) invariant forall k :: i <= k <= a.Length-1-i ==> a[k] == old(a[k]) { a[i], a[a.Length-1-i] := a[a.Length-1-i], a[i]; i := i + 1; } }
Clover_reverse.dfy
064
064
Dafny program: 064
method rotate(a: array<int>, offset:int) returns (b: array<int> ) requires 0<=offset ensures b.Length==a.Length ensures forall i::0<=i<a.Length ==> b[i]==a[(i+offset)%a.Length] { b:= new int[a.Length]; var i:=0; while i<a.Length { b[i]:=a[(i+offset)%a.Length]; i:=i+1; } }
method rotate(a: array<int>, offset:int) returns (b: array<int> ) requires 0<=offset ensures b.Length==a.Length ensures forall i::0<=i<a.Length ==> b[i]==a[(i+offset)%a.Length] { b:= new int[a.Length]; var i:=0; while i<a.Length invariant 0<=i<=a.Length invariant forall j ::0<=j<i ==> b[j]==a[(j+offset)%a.Length] { b[i]:=a[(i+offset)%a.Length]; i:=i+1; } }
Clover_rotate.dfy
065
065
Dafny program: 065
method SelectionSort(a: array<int>) modifies a ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..]) == old(multiset(a[..])) { var n:= 0; while n != a.Length { var mindex, m := n, n+1; while m != a.Length { if a[m] < a[mindex] { mindex := m; } m := m+1; } a[n], a[mindex] := a[mindex], a[n]; n := n+1; } }
method SelectionSort(a: array<int>) modifies a ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j] ensures multiset(a[..]) == old(multiset(a[..])) { var n:= 0; while n != a.Length invariant 0 <= n <= a.Length invariant forall i, j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j] invariant forall i,j :: 0 <= i < j < n ==> a[i] <= a[j] invariant multiset(a[..]) == old(multiset(a[..])) { var mindex, m := n, n+1; while m != a.Length invariant n <= mindex < m <= a.Length invariant forall i :: n <= i < m ==> a[mindex] <= a[i] { if a[m] < a[mindex] { mindex := m; } m := m+1; } a[n], a[mindex] := a[mindex], a[n]; n := n+1; } }
Clover_selectionsort.dfy
067
067
Dafny program: 067
method SetToSeq<T>(s: set<T>) returns (xs: seq<T>) ensures multiset(s) == multiset(xs) { xs := []; var left: set<T> := s; while left != {} { var x :| x in left; left := left - {x}; xs := xs + [x]; } }
method SetToSeq<T>(s: set<T>) returns (xs: seq<T>) ensures multiset(s) == multiset(xs) { xs := []; var left: set<T> := s; while left != {} invariant multiset(left) + multiset(xs) == multiset(s) { var x :| x in left; left := left - {x}; xs := xs + [x]; } }
Clover_set_to_seq.dfy
068
068
Dafny program: 068
method SlopeSearch(a: array2<int>, key: int) returns (m:int, n:int) requires forall i,j,j'::0<=i<a.Length0 && 0<=j<j'<a.Length1 ==> a[i,j]<=a[i,j'] requires forall i,i',j::0<=i<i'<a.Length0 && 0<=j<a.Length1 ==> a[i,j]<=a[i',j] requires exists i,j :: 0<=i<a.Length0 && 0<=j<a.Length1 && a[i,j]==key ensures 0<=m<a.Length0 && 0<=n<a.Length1 ensures a[m,n]==key { m,n:=0, a.Length1-1; while a[m,n] !=key { if a[m,n] < key { m:=m+1; }else{ n:=n-1; } } }
method SlopeSearch(a: array2<int>, key: int) returns (m:int, n:int) requires forall i,j,j'::0<=i<a.Length0 && 0<=j<j'<a.Length1 ==> a[i,j]<=a[i,j'] requires forall i,i',j::0<=i<i'<a.Length0 && 0<=j<a.Length1 ==> a[i,j]<=a[i',j] requires exists i,j :: 0<=i<a.Length0 && 0<=j<a.Length1 && a[i,j]==key ensures 0<=m<a.Length0 && 0<=n<a.Length1 ensures a[m,n]==key { m,n:=0, a.Length1-1; while a[m,n] !=key invariant 0<=m<a.Length0 && 0<=n<a.Length1 invariant exists i,j :: m<=i<a.Length0 && 0<=j<=n && a[i,j]==key decreases a.Length0-m+n { if a[m,n] < key { m:=m+1; }else{ n:=n-1; } } }
Clover_slope_search.dfy
079
079
Dafny program: 079
method twoSum(nums: array<int>, target: int) returns (i: int, j: int) requires nums.Length > 1 requires exists i,j::0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures 0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures forall ii,jj:: (0 <= ii < i && ii < jj < nums.Length) ==> nums[ii] + nums[jj] != target ensures forall jj:: i < jj < j ==> nums[i] + nums[jj] != target { var n := nums.Length; i := 0; j := 1; while i < n - 1 { j := i + 1; while j < n { if nums[i] + nums[j] == target { return; } j := j + 1; } i := i + 1; } }
method twoSum(nums: array<int>, target: int) returns (i: int, j: int) requires nums.Length > 1 requires exists i,j::0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures 0 <= i < j < nums.Length && nums[i] + nums[j] == target ensures forall ii,jj:: (0 <= ii < i && ii < jj < nums.Length) ==> nums[ii] + nums[jj] != target ensures forall jj:: i < jj < j ==> nums[i] + nums[jj] != target { var n := nums.Length; i := 0; j := 1; while i < n - 1 invariant 0 <= i < j <= n invariant forall ii, jj :: 0 <= ii < i && ii < jj < n ==> nums[ii] + nums[jj] != target { j := i + 1; while j < n invariant 0 <= i < j <= n invariant forall jj :: i < jj < j ==> nums[i] + nums[jj] != target { if nums[i] + nums[j] == target { return; } j := j + 1; } i := i + 1; } }
Clover_two_sum.dfy
082
082
Dafny program: 082
// Redo for exam function gcd(a: nat, b: nat): nat lemma r1(a: nat) ensures gcd(a, 0) == a lemma r2(a:nat) ensures gcd(a, a) == a lemma r3(a: nat, b: nat) ensures gcd(a, b) == gcd(b, a) lemma r4 (a: nat, b: nat) ensures b > 0 ==> gcd(a, b) == gcd(b, a % b) method GCD1(a: int, b: int) returns (r: int) requires a > 0 && b > 0 ensures gcd(a,b) == r { if a < b { r3(a,b); r := GCD1(b, a); } else if (a % b == 0) { r4(a,b); r1(b); r := b; } else { r4(a,b); r := GCD1(b, a % b); } } method GCD2(a: int, b: int) returns (r: int) requires a > 0 && b >= 0 ensures gcd(a,b) == r { r1(a); r4(a,b); ( b != 0 || (a > 0 && b >= 0 && gcd(a,b) == a) ) && ( (b < 0 || b == 0) || (b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b))) ); b != 0 || (a > 0 && b >= 0 && gcd(a,b) == a); b == 0 ==> a > 0 && b >= 0 && gcd(a,b) == a; (b < 0 || b == 0) || (b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b))); b >= 0 && b != 0 ==> b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b)); if b == 0 { r1(a); gcd(a,b) == a; r := a; gcd(a,b) == r; } else { r4(a,b); // Method call rule b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b)); // assert // gcd(a,b) == GCD2(b, a % b); r := GCD2(b, a % b); gcd(a,b) == r; } gcd(a,b) == r; }
// Redo for exam function gcd(a: nat, b: nat): nat lemma r1(a: nat) ensures gcd(a, 0) == a lemma r2(a:nat) ensures gcd(a, a) == a lemma r3(a: nat, b: nat) ensures gcd(a, b) == gcd(b, a) lemma r4 (a: nat, b: nat) ensures b > 0 ==> gcd(a, b) == gcd(b, a % b) method GCD1(a: int, b: int) returns (r: int) requires a > 0 && b > 0 ensures gcd(a,b) == r decreases b { if a < b { r3(a,b); r := GCD1(b, a); } else if (a % b == 0) { r4(a,b); assert b > 0; assert gcd(a, b) == gcd(b, a % b); assert a % b == 0; assert gcd(a, b) == gcd(b, 0); r1(b); assert gcd(a, b) == b; r := b; assert gcd(a,b) == r; } else { r4(a,b); r := GCD1(b, a % b); assert gcd(a,b) == r; } assert gcd(a,b) == r; } method GCD2(a: int, b: int) returns (r: int) requires a > 0 && b >= 0 decreases b ensures gcd(a,b) == r { r1(a); r4(a,b); assert ( b != 0 || (a > 0 && b >= 0 && gcd(a,b) == a) ) && ( (b < 0 || b == 0) || (b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b))) ); assert b != 0 || (a > 0 && b >= 0 && gcd(a,b) == a); assert b == 0 ==> a > 0 && b >= 0 && gcd(a,b) == a; assert (b < 0 || b == 0) || (b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b))); assert b >= 0 && b != 0 ==> b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b)); if b == 0 { r1(a); assert gcd(a,b) == a; r := a; assert gcd(a,b) == r; } else { r4(a,b); // Method call rule assert b > 0 && (a % b) >= 0 ==> gcd(a,b) == gcd(b,(a % b)); // assert // gcd(a,b) == GCD2(b, a % b); r := GCD2(b, a % b); assert gcd(a,b) == r; } assert gcd(a,b) == r; }
Correctness_tmp_tmpwqvg5q_4_HoareLogic_exam.dfy
083
083
Dafny program: 083
/** (a) Verify whether or not the following program satisfies total correctness. You should use weakest precondition reasoning and may extend the loop invariant if required. You will need to add a decreases clause to prove termination (a) Weakest precondition proof (without termination) (6 marks) Termination proof (2marks) */ function fusc(n: int): nat lemma rule1() ensures fusc(0) == 0 lemma rule2() ensures fusc(1) == 1 lemma rule3(n:nat) ensures fusc(2*n) == fusc(n) lemma rule4(n:nat) ensures fusc(2*n+1) == fusc(n) + fusc(n+1) method ComputeFusc(N: int) returns (b: int) requires N >= 0 ensures b == fusc(N) { b := 0; var n, a := N, 1; while (n != 0) { ghost var d := n; // termination metric if (n % 2 == 0) { rule4(n/2); rule3(n/2); a := a + b; n := n / 2; } else { rule4((n-1)/2); rule3((n-1)/2); rule3((n+1)/2); b * fusc(n) - b * fusc(n) + b * fusc(((n-1)/2)+1) + a * fusc(n); b * fusc(n) - b * (fusc(n) - fusc(((n-1)/2)+1)) + a * fusc(n); a * fusc(n - 1) + b * fusc(n) - b * fusc(n-1) + a * fusc(n) - a * fusc(n-1); b := b + a; n := (n - 1) / 2; } } rule1(); rule2(); }
/** (a) Verify whether or not the following program satisfies total correctness. You should use weakest precondition reasoning and may extend the loop invariant if required. You will need to add a decreases clause to prove termination (a) Weakest precondition proof (without termination) (6 marks) Termination proof (2marks) */ function fusc(n: int): nat lemma rule1() ensures fusc(0) == 0 lemma rule2() ensures fusc(1) == 1 lemma rule3(n:nat) ensures fusc(2*n) == fusc(n) lemma rule4(n:nat) ensures fusc(2*n+1) == fusc(n) + fusc(n+1) method ComputeFusc(N: int) returns (b: int) requires N >= 0 ensures b == fusc(N) { b := 0; var n, a := N, 1; assert 0 <= n <= N; assert fusc(N) == a * fusc(n) + b * fusc(n + 1); while (n != 0) invariant 0 <= n <= N // J invariant fusc(N) == a * fusc(n) + b * fusc(n + 1) // J decreases n // D { ghost var d := n; // termination metric assert fusc(N) == a * fusc(n) + b * fusc(n + 1); assert n != 0; assert (n % 2 != 0 && n % 2 == 0) || fusc(N) == a * fusc(n) + b * fusc(n + 1); assert (n % 2 != 0 || n % 2 == 0) ==> fusc(N) == a * fusc(n) + b * fusc(n + 1); assert n % 2 != 0 || fusc(N) == a * fusc(n) + b * fusc(n + 1); assert n % 2 == 0 || fusc(N) == a * fusc(n) + b * fusc(n + 1); assert n % 2 == 0 ==> fusc(N) == a * fusc(n) + b * fusc(n + 1); assert n % 2 != 0 ==> fusc(N) == a * fusc(n) + b * fusc(n + 1); if (n % 2 == 0) { rule4(n/2); assert fusc((n/2) + 1) == fusc(n + 1) - fusc(n/2); rule3(n/2); assert fusc(n/2) == fusc(n); assert fusc(N) == (a + b) * fusc(n/2) + b * fusc((n/2) + 1); a := a + b; assert fusc(N) == a * fusc(n/2) + b * fusc((n/2) + 1); n := n / 2; assert fusc(N) == a * fusc(n) + b * fusc(n + 1); } else { rule4((n-1)/2); assert fusc(n) - fusc((n-1)/2) == fusc(((n-1)/2)+1); rule3((n-1)/2); assert fusc((n-1)/2) == fusc(n-1); assert fusc(((n-1)/2)+1) == fusc((n+1)/2); rule3((n+1)/2); assert fusc((n+1)/2) == fusc(n+1); assert fusc(N) == a * fusc(n) + b * fusc(n + 1); assert fusc(N) == b * fusc(((n-1)/2)+1) + a * fusc(n); assert fusc(N) == b * fusc(n) - b * fusc(n) + b * fusc(((n-1)/2)+1) + a * fusc(n); assert fusc(N) == b * fusc(n) - b * (fusc(n) - fusc(((n-1)/2)+1)) + a * fusc(n); assert fusc(N) == b * fusc(n) - b * fusc((n-1)/2) + a * fusc(n); assert fusc(N) == b * fusc(n) - b * fusc(n-1) + a * fusc(n); assert fusc(N) == b * fusc(n) - b * fusc(n-1) + a * fusc(n); assert fusc(N) == a * fusc(n - 1) + b * fusc(n) - b * fusc(n-1) + a * fusc(n) - a * fusc(n-1); assert fusc(N) == a * fusc(n - 1) + (b + a) * (fusc(n) - fusc(n-1)); assert fusc(N) == a * fusc((n - 1)) + (b + a) * (fusc(n) - fusc((n-1)/2)); assert fusc(N) == a * fusc((n - 1) / 2) + (b + a) * fusc(((n - 1) / 2) + 1); b := b + a; assert fusc(N) == a * fusc((n - 1) / 2) + b * fusc(((n - 1) / 2) + 1); n := (n - 1) / 2; assert fusc(N) == a * fusc(n) + b * fusc(n + 1); } assert n < d; // termination metric assert fusc(N) == a * fusc(n) + b * fusc(n + 1); // J } assert n == 0; // !B rule1(); assert fusc(0) == 0; rule2(); assert fusc(1) == 1; assert fusc(N) == a * fusc(0) + b * fusc(0 + 1); // J assert fusc(N) == a * 0 + b * 1; // J assert b == fusc(N); }
Correctness_tmp_tmpwqvg5q_4_MethodCalls_q1.dfy
084
084
Dafny program: 084
/** Ather, Mohammad Faiz (s4648481/3) CSSE3100 Assignemnt 3 The University of Queensland */ // Question 1 method Tangent(r: array<int>, x: array<int>) returns (found: bool) requires forall i:: 1 <= i < x.Length ==> x[i-1] < x[i] requires forall i, j :: 0 <= i < j < x.Length ==> x[i] < x[j] ensures !found ==> forall i,j :: 0 <= i < r.Length && 0 <= j < x.Length ==> r[i] != x[j] ensures found ==> exists i,j :: 0 <= i < r.Length && 0 <= j < x.Length && r[i] == x[j] { found := false; var n, f := 0, x.Length; while n != r.Length && !found forall i,j :: 0 <= i < n && 0 <= j < x.Length ==> r[i] != x[j] exists i,j :: 0 <= i < r.Length && 0 <= j < x.Length && n == i && f == j && r[i] == x[j] { f := BinarySearch(x, r[n]); /* not iterate over either array once a tangent has been found */ // see if if (f != x.Length && r[n] == x[f]) { found := true; } else { n := n + 1; } } (!found && n == r.Length) || ( found && n != r.Length && r[n] == x[f]); !false; // sanity check } // Author: Leino, Title: Program Proofs method BinarySearch(a: array<int>, circle: int) returns (n: int) requires forall i :: 1 <= i < a.Length ==> a[i-1] < a[i] requires forall i, j :: 0 <= i < j < a.Length ==> a[i] < a[j] ensures 0 <= n <= a.Length ensures forall i :: 0 <= i < n ==> a[i] < circle ensures forall i :: n <= i < a.Length ==> circle <= a[i] { var lo, hi := 0, a.Length; while lo < hi 0 <= i < lo ==> a[i] < circle hi <= i < a.Length ==> a[i] >= circle { var mid := (lo + hi) / 2; calc { lo; == (lo + lo) / 2; <= { assert lo <= hi; } (lo + hi) / 2; < { assert lo < hi; } (hi + hi) / 2; == hi; } /* for a given circle in r, should not iterate over array x once it can be deduced that no tangent will be found for that circle. */ // see if and 1st else if if (a[lo] > circle) { hi := lo; } else if (a[hi-1] < circle) { lo := hi; } else if (a[mid] < circle) { lo := mid + 1; } else { hi := mid; } } n := lo; !false; // sanity check }
/** Ather, Mohammad Faiz (s4648481/3) CSSE3100 Assignemnt 3 The University of Queensland */ // Question 1 method Tangent(r: array<int>, x: array<int>) returns (found: bool) requires forall i:: 1 <= i < x.Length ==> x[i-1] < x[i] requires forall i, j :: 0 <= i < j < x.Length ==> x[i] < x[j] ensures !found ==> forall i,j :: 0 <= i < r.Length && 0 <= j < x.Length ==> r[i] != x[j] ensures found ==> exists i,j :: 0 <= i < r.Length && 0 <= j < x.Length && r[i] == x[j] { found := false; var n, f := 0, x.Length; while n != r.Length && !found invariant 0 <= n <= r.Length invariant !found ==> forall i,j :: 0 <= i < n && 0 <= j < x.Length ==> r[i] != x[j] invariant found ==> exists i,j :: 0 <= i < r.Length && 0 <= j < x.Length && n == i && f == j && r[i] == x[j] decreases r.Length - n, !found { f := BinarySearch(x, r[n]); /* not iterate over either array once a tangent has been found */ // see if if (f != x.Length && r[n] == x[f]) { found := true; } else { n := n + 1; } } assert (!found && n == r.Length) || ( found && n != r.Length && r[n] == x[f]); assert !false; // sanity check } // Author: Leino, Title: Program Proofs method BinarySearch(a: array<int>, circle: int) returns (n: int) requires forall i :: 1 <= i < a.Length ==> a[i-1] < a[i] requires forall i, j :: 0 <= i < j < a.Length ==> a[i] < a[j] ensures 0 <= n <= a.Length ensures forall i :: 0 <= i < n ==> a[i] < circle ensures forall i :: n <= i < a.Length ==> circle <= a[i] { var lo, hi := 0, a.Length; while lo < hi invariant 0 <= lo <= hi <= a.Length invariant forall i :: 0 <= i < lo ==> a[i] < circle invariant forall i :: hi <= i < a.Length ==> a[i] >= circle decreases hi - lo { var mid := (lo + hi) / 2; calc { lo; == (lo + lo) / 2; <= { assert lo <= hi; } (lo + hi) / 2; < { assert lo < hi; } (hi + hi) / 2; == hi; } /* for a given circle in r, should not iterate over array x once it can be deduced that no tangent will be found for that circle. */ // see if and 1st else if if (a[lo] > circle) { hi := lo; } else if (a[hi-1] < circle) { lo := hi; } else if (a[mid] < circle) { lo := mid + 1; } else { hi := mid; } } n := lo; assert !false; // sanity check }
Correctness_tmp_tmpwqvg5q_4_Sorting_Tangent.dfy
085
085
Dafny program: 085
//Method barrier below receives an array and an integer p //and returns a boolean b which is true if and only if //all the positions to the left of p and including also position p contain elements //that are strictly smaller than all the elements contained in the positions to the right of p //Examples: // If v=[7,2,5,8] and p=0 or p=1 then the method must return false, // but for p=2 the method should return true //1.Specify the method //2.Implement an O(v.size()) method //3.Verify the method method barrier(v:array<int>,p:int) returns (b:bool) //Give the precondition //Give the postcondition //{Implement and verify} requires v.Length > 0 requires 0<=p<v.Length ensures b==forall k,l::0<=k<=p && p<l<v.Length ==> v[k]<v[l] { var i:=1; var max:=0; while(i<=p) { if(v[i]>v[max]){ max:=i; } i:=i+1; } while(i<v.Length && v[i]>v[max]) { i:=i+1; } b:=i==v.Length; }
//Method barrier below receives an array and an integer p //and returns a boolean b which is true if and only if //all the positions to the left of p and including also position p contain elements //that are strictly smaller than all the elements contained in the positions to the right of p //Examples: // If v=[7,2,5,8] and p=0 or p=1 then the method must return false, // but for p=2 the method should return true //1.Specify the method //2.Implement an O(v.size()) method //3.Verify the method method barrier(v:array<int>,p:int) returns (b:bool) //Give the precondition //Give the postcondition //{Implement and verify} requires v.Length > 0 requires 0<=p<v.Length ensures b==forall k,l::0<=k<=p && p<l<v.Length ==> v[k]<v[l] { var i:=1; var max:=0; while(i<=p) decreases p-i invariant 0<=i<=p+1 invariant 0<=max<i invariant forall k::0<=k<i ==> v[max] >= v[k] { if(v[i]>v[max]){ max:=i; } i:=i+1; } while(i<v.Length && v[i]>v[max]) decreases v.Length - i invariant 0<=i<=v.Length invariant forall k::0<=k<=p ==> v[k]<=v[max] invariant forall k::p<k<i ==> v[k] > v[max] { i:=i+1; } b:=i==v.Length; }
Dafny-Exercises_tmp_tmpjm75muf__Session10Exercises_ExerciseBarrier.dfy
087
087
Dafny program: 087
function fib(n: nat): nat { if n == 0 then 0 else if n == 1 then 1 else fib(n - 1) + fib(n - 2) } method fibonacci1(n:nat) returns (f:nat) ensures f==fib(n) { var i := 0; f := 0; var fsig := 1; while i < n { f, fsig := fsig, f + fsig; i := i + 1; } } method fibonacci2(n:nat) returns (f:nat) ensures f==fib(n) { if (n==0) {f:=0;} else{ var i := 1; var fant := 0; f := 1; while i < n { fant, f := f, fant + f; i := i + 1; } } } method fibonacci3(n:nat) returns (f:nat) ensures f==fib(n) { { var i: int := 0; var a := 1; f := 0; while i < n else a==fib(i-1) && f==fib(i) { a, f := f, a + f; i := i + 1; } } }
function fib(n: nat): nat decreases n { if n == 0 then 0 else if n == 1 then 1 else fib(n - 1) + fib(n - 2) } method fibonacci1(n:nat) returns (f:nat) ensures f==fib(n) { var i := 0; f := 0; var fsig := 1; while i < n decreases n - i//write the bound invariant f==fib(i) && fsig==fib(i+1)//write the invariant invariant i<=n { f, fsig := fsig, f + fsig; i := i + 1; } } method fibonacci2(n:nat) returns (f:nat) ensures f==fib(n) { if (n==0) {f:=0;} else{ var i := 1; var fant := 0; f := 1; while i < n decreases n-i//write the bound invariant fant==fib(i-1) && f==fib(i)//write the invariant invariant i<=n { fant, f := f, fant + f; i := i + 1; } } } method fibonacci3(n:nat) returns (f:nat) ensures f==fib(n) { { var i: int := 0; var a := 1; f := 0; while i < n decreases n-i//write the bound invariant 0<=i<=n invariant if i ==0 then a==fib(i+1) && f==fib(i)//write the invariant else a==fib(i-1) && f==fib(i) { a, f := f, a + f; i := i + 1; } } }
Dafny-Exercises_tmp_tmpjm75muf__Session2Exercises_ExerciseFibonacci.dfy
088
088
Dafny program: 088
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} method mpositive(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; //1. assert positive(v[..0]) while i<v.Length && v[i]>=0 { //2. assert 0<=i<v.Length && positive(v[..i]); i:=i+1; //2. assert 0<=i<v.Length && positive(v[..i]); } //3. assert i==v.Length ==> positive(v[..]); //3. assert i<v.Length => v[i]<0; b := i==v.Length; } method mpositive3(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; b:=true; while(i<v.Length && b) { b:=v[i]>=0; i:=i+1; } } method mpositive4(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; b:=true; while(i<v.Length && b) { b:=v[i]>=0; i:=i+1; } } method mpositivertl(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=v.Length-1; while(i>=0 && v[i]>=0) { i:=i-1; } b:= i==-1; }
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} method mpositive(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; //1. assert positive(v[..0]) while i<v.Length && v[i]>=0 decreases v.Length - i invariant 0<=i<=v.Length invariant positive(v[..i]) { //2. assert 0<=i<v.Length && positive(v[..i]); i:=i+1; //2. assert 0<=i<v.Length && positive(v[..i]); } //3. assert i==v.Length ==> positive(v[..]); //3. assert i<v.Length => v[i]<0; b := i==v.Length; } method mpositive3(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; b:=true; while(i<v.Length && b) decreases v.Length - i invariant 0 <= i <= v.Length invariant b==positive(v[0..i]) invariant !b ==> !positive(v[0..v.Length]) { b:=v[i]>=0; i:=i+1; } } method mpositive4(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=0; b:=true; while(i<v.Length && b) decreases v.Length - i invariant 0 <= i <= v.Length invariant b==positive(v[0..i]) invariant !b ==> !positive(v[0..v.Length]) { b:=v[i]>=0; i:=i+1; } } method mpositivertl(v:array<int>) returns (b:bool) ensures b==positive(v[0..v.Length]) { var i:=v.Length-1; while(i>=0 && v[i]>=0) decreases i invariant -1 <= i < v.Length invariant positive(v[i+1..]) { i:=i-1; } b:= i==-1; }
Dafny-Exercises_tmp_tmpjm75muf__Session2Exercises_ExercisePositive.dfy
089
089
Dafny program: 089
method mroot1(n:int) returns (r:int) //Cost O(root n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { r:=0; while (r+1)*(r+1) <=n { r:=r+1; } } method mroot2(n:int) returns (r:int) //Cost O(n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { r:=n; while n<r*r { r:=r-1; } } method mroot3(n:int) returns (r:int) //Cost O(log n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { var y:int; var h:int; r:=0; y:=n+1; //Search in interval [0,n+1) while (y!=r+1) //[r,y] { h:=(r+y)/2; if (h*h<=n) {r:=h;} else {y:=h;} } }
method mroot1(n:int) returns (r:int) //Cost O(root n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { r:=0; while (r+1)*(r+1) <=n invariant r>=0 && r*r <=n decreases n-r*r { r:=r+1; } } method mroot2(n:int) returns (r:int) //Cost O(n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { r:=n; while n<r*r invariant 0<=r<=n && n<(r+1)*(r+1)//write the invariant invariant r*r<=n ==> n<(r+1)*(r+1) decreases r//write the bound { r:=r-1; } } method mroot3(n:int) returns (r:int) //Cost O(log n) requires n>=0 ensures r>=0 && r*r <= n <(r+1)*(r+1) { var y:int; var h:int; r:=0; y:=n+1; //Search in interval [0,n+1) while (y!=r+1) //[r,y] invariant r>=0 && r*r<=n<y*y && y>=r+1// write the invariant decreases y-r//write the bound { h:=(r+y)/2; if (h*h<=n) {r:=h;} else {y:=h;} } }
Dafny-Exercises_tmp_tmpjm75muf__Session2Exercises_ExerciseSquare_root.dfy
090
090
Dafny program: 090
//Algorithm 1: From left to right return the first method mmaximum1(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] { var j:=1; i:=0; while(j<v.Length) { if(v[j] > v[i]){i:=j;} j:=j+1; } } //Algorithm 2: From right to left return the last method mmaximum2(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] { var j:=v.Length-2; i:=v.Length - 1; while(j>=0) { if(v[j] > v[i]){i:=j;} j:=j-1; } } method mfirstMaximum(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] ensures forall l:: 0<=l<i ==> v[i]>v[l] //Algorithm: from left to right { var j:=1; i:=0; while(j<v.Length) { if(v[j] > v[i]){i:=j;} j:=j+1; } } method mlastMaximum(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] ensures forall l:: i<l<v.Length ==> v[i]>v[l] { var j:=v.Length-2; i := v.Length-1; while(j>=0) { if(v[j] > v[i]){i:=j;} j:=j-1; } } //Algorithm : from left to right //Algorithm : from right to left method mmaxvalue1(v:array<int>) returns (m:int) requires v.Length>0 ensures m in v[..] ensures forall k::0<=k<v.Length ==> m>=v[k] { var i:=mmaximum1(v); m:=v[i]; } method mmaxvalue2(v:array<int>) returns (m:int) requires v.Length>0 ensures m in v[..] ensures forall k::0<=k<v.Length ==> m>=v[k] { var i:=mmaximum2(v); m:=v[i]; }
//Algorithm 1: From left to right return the first method mmaximum1(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] { var j:=1; i:=0; while(j<v.Length) decreases v.Length - j invariant 0<=j<=v.Length invariant 0<=i<j invariant forall k:: 0<=k<j ==> v[i] >= v[k] { if(v[j] > v[i]){i:=j;} j:=j+1; } } //Algorithm 2: From right to left return the last method mmaximum2(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] { var j:=v.Length-2; i:=v.Length - 1; while(j>=0) decreases j invariant 0<=i<v.Length invariant -1<=j<v.Length-1 invariant forall k :: v.Length>k>j ==> v[k]<=v[i] { if(v[j] > v[i]){i:=j;} j:=j-1; } } method mfirstMaximum(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] ensures forall l:: 0<=l<i ==> v[i]>v[l] //Algorithm: from left to right { var j:=1; i:=0; while(j<v.Length) decreases v.Length - j invariant 0<=j<=v.Length invariant 0<=i<j invariant forall k:: 0<=k<j ==> v[i] >= v[k] invariant forall k:: 0<=k<i ==> v[i] > v[k] { if(v[j] > v[i]){i:=j;} j:=j+1; } } method mlastMaximum(v:array<int>) returns (i:int) requires v.Length>0 ensures 0<=i<v.Length ensures forall k:: 0<=k<v.Length ==> v[i]>=v[k] ensures forall l:: i<l<v.Length ==> v[i]>v[l] { var j:=v.Length-2; i := v.Length-1; while(j>=0) decreases j invariant -1<=j<v.Length-1 invariant 0<=i<v.Length invariant forall k :: v.Length>k>j ==> v[k]<=v[i] invariant forall k :: v.Length>k>i ==> v[k]<v[i] { if(v[j] > v[i]){i:=j;} j:=j-1; } } //Algorithm : from left to right //Algorithm : from right to left method mmaxvalue1(v:array<int>) returns (m:int) requires v.Length>0 ensures m in v[..] ensures forall k::0<=k<v.Length ==> m>=v[k] { var i:=mmaximum1(v); m:=v[i]; } method mmaxvalue2(v:array<int>) returns (m:int) requires v.Length>0 ensures m in v[..] ensures forall k::0<=k<v.Length ==> m>=v[k] { var i:=mmaximum2(v); m:=v[i]; }
Dafny-Exercises_tmp_tmpjm75muf__Session3Exercises_ExerciseMaximum.dfy
091
091
Dafny program: 091
predicate allEqual(s:seq<int>) {forall i,j::0<=i<|s| && 0<=j<|s| ==> s[i]==s[j] } //{forall i,j::0<=i<=j<|s| ==> s[i]==s[j] } //{forall i::0<i<|s| ==> s[i-1]==s[i]} //{forall i::0<=i<|s|-1 ==> s[i]==s[i+1]} //Ordered indexes lemma equivalenceNoOrder(s:seq<int>) ensures allEqual(s) <==> forall i,j::0<=i<=j<|s| ==> s[i]==s[j] {} //All equal to first lemma equivalenceEqualtoFirst(s:seq<int>) requires s!=[] ensures allEqual(s) <==> (forall i::0<=i<|s| ==> s[0]==s[i]) {} lemma equivalenceContiguous(s:seq<int>) ensures (allEqual(s) ==> forall i::0<=i<|s|-1 ==> s[i]==s[i+1]) ensures (allEqual(s) <== forall i::0<=i<|s|-1 ==> s[i]==s[i+1]) { if(|s|==0 || |s|==1){ } else{ calc { forall i::0<=i<|s|-1 ==> s[i]==s[i+1]; ==> { equivalenceContiguous(s[..|s|-1]); } allEqual(s); } } } method mallEqual1(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i := 0; b := true; while (i < v.Length && b) { b:=(v[i]==v[0]); i := i+1; } } method mallEqual2(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i:int; b:=true; i:=0; while (i < v.Length && v[i] == v[0]) { i:=i+1; } b:=(i==v.Length); } method mallEqual3(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { equivalenceContiguous(v[..]); var i:int; b:=true; if (v.Length >0){ i:=0; while (i<v.Length-1 && v[i]==v[i+1]) { i:=i+1; } b:=(i==v.Length-1); } } method mallEqual4(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i:int; b:=true; if (v.Length>0){ i:=0; while (i < v.Length-1 && b) { b:=(v[i]==v[i+1]); i:=i+1; } } } method mallEqual5(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i := 0; b := true; while (i < v.Length && b) { if (v[i] != v[0]) { b := false; } else { i := i+1;} } }
predicate allEqual(s:seq<int>) {forall i,j::0<=i<|s| && 0<=j<|s| ==> s[i]==s[j] } //{forall i,j::0<=i<=j<|s| ==> s[i]==s[j] } //{forall i::0<i<|s| ==> s[i-1]==s[i]} //{forall i::0<=i<|s|-1 ==> s[i]==s[i+1]} //Ordered indexes lemma equivalenceNoOrder(s:seq<int>) ensures allEqual(s) <==> forall i,j::0<=i<=j<|s| ==> s[i]==s[j] {} //All equal to first lemma equivalenceEqualtoFirst(s:seq<int>) requires s!=[] ensures allEqual(s) <==> (forall i::0<=i<|s| ==> s[0]==s[i]) {} lemma equivalenceContiguous(s:seq<int>) ensures (allEqual(s) ==> forall i::0<=i<|s|-1 ==> s[i]==s[i+1]) ensures (allEqual(s) <== forall i::0<=i<|s|-1 ==> s[i]==s[i+1]) { assert allEqual(s) ==> forall i::0<=i<|s|-1 ==> s[i]==s[i+1]; if(|s|==0 || |s|==1){ } else{ calc { forall i::0<=i<|s|-1 ==> s[i]==s[i+1]; ==> { equivalenceContiguous(s[..|s|-1]); assert s[|s|-2] == s[|s|-1]; } allEqual(s); } } } method mallEqual1(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i := 0; b := true; while (i < v.Length && b) invariant 0 <= i <= v.Length invariant b==allEqual(v[..i]) decreases v.Length - i { b:=(v[i]==v[0]); i := i+1; } } method mallEqual2(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i:int; b:=true; i:=0; while (i < v.Length && v[i] == v[0]) invariant 0 <= i <= v.Length invariant forall k:: 0 <= k < i ==> v[k] == v[0] decreases v.Length - i { i:=i+1; } b:=(i==v.Length); } method mallEqual3(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { equivalenceContiguous(v[..]); var i:int; b:=true; if (v.Length >0){ i:=0; while (i<v.Length-1 && v[i]==v[i+1]) invariant 0<=i<=v.Length -1 invariant b==allEqual(v[..i+1]) decreases v.Length - i { i:=i+1; } b:=(i==v.Length-1); } } method mallEqual4(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i:int; b:=true; if (v.Length>0){ i:=0; while (i < v.Length-1 && b) invariant 0 <= i < v.Length invariant b==allEqual(v[..i+1]) decreases v.Length - i { b:=(v[i]==v[i+1]); i:=i+1; } } } method mallEqual5(v:array<int>) returns (b:bool) ensures b==allEqual(v[0..v.Length]) { var i := 0; b := true; while (i < v.Length && b) invariant 0<=i<=v.Length// invariant b ==> forall k::0<=k<i ==> v[k] == v[0] invariant !b ==> exists k:: 0<=k<v.Length && v[k]!=v[0] decreases v.Length - i - (if b then 0 else 1)// { if (v[i] != v[0]) { b := false; } else { i := i+1;} } }
Dafny-Exercises_tmp_tmpjm75muf__Session4Exercises_ExerciseAllEqual.dfy
092
092
Dafny program: 092
predicate strictSorted(s : seq<int>) { forall u, w :: 0 <= u < w < |s| ==> s[u] < s[w] } method mcontained(v:array<int>,w:array<int>,n:int,m:int) returns (b:bool) //Specify and implement an O(m+n) algorithm that returns b //v and w are strictly increasing ordered arrays //b is true iff the first n elements of v are contained in the first m elements of w requires n<=m && n>=0 requires strictSorted(v[..]) requires strictSorted(w[..]) requires v.Length >= n && w.Length >= m ensures b==forall k:: 0<= k< n ==> v[k] in w[..m]//exists j :: 0 <= j < m && v[k] == w[j] { var i:=0; var j:=0; while(i<n && j<m && (v[i] >= w[j])) //&& b) { if(v[i] == w[j]){ i:=i+1; } j:=j+1; } b := i==n; }
predicate strictSorted(s : seq<int>) { forall u, w :: 0 <= u < w < |s| ==> s[u] < s[w] } method mcontained(v:array<int>,w:array<int>,n:int,m:int) returns (b:bool) //Specify and implement an O(m+n) algorithm that returns b //v and w are strictly increasing ordered arrays //b is true iff the first n elements of v are contained in the first m elements of w requires n<=m && n>=0 requires strictSorted(v[..]) requires strictSorted(w[..]) requires v.Length >= n && w.Length >= m ensures b==forall k:: 0<= k< n ==> v[k] in w[..m]//exists j :: 0 <= j < m && v[k] == w[j] { var i:=0; var j:=0; while(i<n && j<m && (v[i] >= w[j])) //&& b) invariant 0<=i<=n invariant 0<=j<=m invariant strictSorted(v[..]) invariant strictSorted(w[..]) invariant forall k::0<=k<i ==> v[k] in w[..j] invariant i<n ==> !(v[i] in w[..j]) decreases w.Length-j decreases v.Length-i { if(v[i] == w[j]){ i:=i+1; } j:=j+1; } assert i<n ==> !(v[i] in w[..m]); b := i==n; }
Dafny-Exercises_tmp_tmpjm75muf__Session4Exercises_ExerciseContained.dfy
093
093
Dafny program: 093
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} method mfirstNegative(v:array<int>) returns (b:bool, i:int) ensures b <==> exists k::0<=k<v.Length && v[k]<0 ensures b ==> 0<=i<v.Length && v[i]<0 && positive(v[0..i]) { i:=0; b:=false; while (i<v.Length && !b) { b:=(v[i]<0); i:=i+1; } if (b){i:=i-1;} } method mfirstNegative2(v:array<int>) returns (b:bool, i:int) ensures b <==> exists k::0<=k<v.Length && v[k]<0 ensures b ==> 0<=i<v.Length && v[i]<0 && positive(v[0..i]) { i:=0;b:=false; while (i<v.Length && !b) { b:=(v[i]<0); if (!b) {i:=i+1;} } }
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} method mfirstNegative(v:array<int>) returns (b:bool, i:int) ensures b <==> exists k::0<=k<v.Length && v[k]<0 ensures b ==> 0<=i<v.Length && v[i]<0 && positive(v[0..i]) { i:=0; b:=false; while (i<v.Length && !b) invariant 0<=i<=v.Length invariant b <==> exists k::0<=k<i && v[k]<0 invariant b ==> v[i-1]<0 && positive(v[0..i-1]) decreases v.Length - i { b:=(v[i]<0); i:=i+1; } if (b){i:=i-1;} } method mfirstNegative2(v:array<int>) returns (b:bool, i:int) ensures b <==> exists k::0<=k<v.Length && v[k]<0 ensures b ==> 0<=i<v.Length && v[i]<0 && positive(v[0..i]) { i:=0;b:=false; while (i<v.Length && !b) invariant 0<=i<=v.Length invariant b ==> i<v.Length && v[i]<0 && !(exists k::0<=k<i && v[k]<0) invariant b <== exists k::0<=k<i && v[k]<0 decreases v.Length - i - (if b then 1 else 0) { b:=(v[i]<0); if (!b) {i:=i+1;} } }
Dafny-Exercises_tmp_tmpjm75muf__Session4Exercises_ExerciseFirstNegative.dfy
094
094
Dafny program: 094
method mfirstCero(v:array<int>) returns (i:int) ensures 0 <=i<=v.Length ensures forall j:: 0<=j<i ==> v[j]!=0 ensures i!=v.Length ==> v[i]==0 { i:=0; while (i<v.Length && v[i]!=0) {i:=i+1;} }
method mfirstCero(v:array<int>) returns (i:int) ensures 0 <=i<=v.Length ensures forall j:: 0<=j<i ==> v[j]!=0 ensures i!=v.Length ==> v[i]==0 { i:=0; while (i<v.Length && v[i]!=0) invariant 0<=i<=v.Length invariant forall j:: 0<=j<i ==> v[j]!=0 decreases v.Length -i {i:=i+1;} }
Dafny-Exercises_tmp_tmpjm75muf__Session4Exercises_ExercisefirstZero.dfy
095
095
Dafny program: 095
function SumR(s:seq<int>):int { if (s==[]) then 0 else SumR(s[..|s|-1])+s[|s|-1] } function SumL(s:seq<int>):int { if (s==[]) then 0 else s[0]+SumL(s[1..]) } lemma concatLast(s:seq<int>,t:seq<int>) requires t!=[] ensures (s+t)[..|s+t|-1] == s+(t[..|t|-1]) {} lemma concatFirst(s:seq<int>,t:seq<int>) requires s!=[] ensures (s+t)[1..] == s[1..]+t {} lemma {:induction s,t} SumByPartsR(s:seq<int>,t:seq<int>) ensures SumR(s+t) == SumR(s)+SumR(t) { if (t==[]) {assert s+t == s;} else if (s==[]) {assert s+t==t;} else { calc =={ SumR(s+t); SumR((s+t)[..|s+t|-1])+(s+t)[|s+t|-1]; SumR((s+t)[..|s+t|-1])+t[|t|-1]; {concatLast(s,t);} SumR(s+t[..|t|-1])+t[|t|-1]; {SumByPartsR(s,t[..|t|-1]);} SumR(s)+SumR(t[..|t|-1])+t[|t|-1]; SumR(s)+SumR(t); } } } lemma {:induction s,t} SumByPartsL(s:seq<int>,t:seq<int>) ensures SumL(s+t) == SumL(s)+SumL(t) //Prove this { if(t==[]){ } else if(s==[]){ } else{ calc == { SumL(s+t); (s+t)[0] + SumL((s+t)[1..]); s[0] + SumL((s+t)[1..]); {concatFirst(s,t);} s[0] + SumL(s[1..] + t); {SumByPartsL(s[1..], t);} s[0] + SumL(s[1..]) + SumL(t); } } } lemma {:induction s,i,j} equalSumR(s:seq<int>,i:int,j:int) requires 0<=i<=j<=|s| ensures SumR(s[i..j])==SumL(s[i..j]) //Prove this { if(s==[]){ }else{ if(i==j){ } else{ calc == { SumR(s[i..j]); { } SumR(s[i..j-1]) + s[j-1]; {equalSumR(s, i, j-1);} SumL(s[i..j-1]) + s[j-1]; {assert s[j-1] == SumL([s[j-1]]);} SumL(s[i..j-1]) + SumL([s[j-1]]); {SumByPartsL(s[i..j-1], [s[j-1]]);} SumL(s[i..j-1] + [s[j-1]]); { } SumL(s[i..j]); /*SumR(s[i..j-1])+SumR(s[j..j]); SumR(s[i..j-1]) + s[j..j]; SumL(s);*/ } } } } lemma equalSumsV() ensures forall v:array<int>,i,j | 0<=i<=j<=v.Length :: SumR(v[i..j])==SumL(v[i..j]) //proving the forall { forall v:array<int>,i,j | 0<=i<=j<=v.Length ensures SumR(v[i..j])==SumL(v[i..j]) {equalSumR(v[..],i,j);} } function SumV(v:array<int>,c:int,f:int):int requires 0<=c<=f<=v.Length reads v {SumR(v[c..f])} lemma ArrayFacts<T>() ensures forall v : array<T> :: v[..v.Length] == v[..]; ensures forall v : array<T> :: v[0..] == v[..]; ensures forall v : array<T> :: v[0..v.Length] == v[..]; ensures forall v : array<T> ::|v[0..v.Length]|==v.Length; ensures forall v : array<T> | v.Length>=1 ::|v[1..v.Length]|==v.Length-1; ensures forall v : array<T> ::forall k : nat | k < v.Length :: v[..k+1][..k] == v[..k] // ensures forall v:array<int>,i,j | 0<=i<=j<=v.Length :: SumR(v[i..j])==SumL(v[i..j]) {equalSumsV();} method sumElems(v:array<int>) returns (sum:int) //ensures sum==SumL(v[0..v.Length]) ensures sum==SumR(v[..]) //ensures sum==SumV(v,0,v.Length) {ArrayFacts<int>(); sum:=0; var i:int; i:=0; while (i<v.Length) { sum:=sum+v[i]; i:=i+1; } } method sumElemsB(v:array<int>) returns (sum:int) //ensures sum==SumL(v[0..v.Length]) ensures sum==SumR(v[0..v.Length]) { ArrayFacts<int>(); sum:=0; var i:int; i:=v.Length; equalSumsV(); while(i>0) { sum:=sum+v[i-1]; i:=i-1; } }
function SumR(s:seq<int>):int decreases s { if (s==[]) then 0 else SumR(s[..|s|-1])+s[|s|-1] } function SumL(s:seq<int>):int decreases s { if (s==[]) then 0 else s[0]+SumL(s[1..]) } lemma concatLast(s:seq<int>,t:seq<int>) requires t!=[] ensures (s+t)[..|s+t|-1] == s+(t[..|t|-1]) {} lemma concatFirst(s:seq<int>,t:seq<int>) requires s!=[] ensures (s+t)[1..] == s[1..]+t {} lemma {:induction s,t} SumByPartsR(s:seq<int>,t:seq<int>) decreases s,t ensures SumR(s+t) == SumR(s)+SumR(t) { if (t==[]) {assert s+t == s;} else if (s==[]) {assert s+t==t;} else { calc =={ SumR(s+t); SumR((s+t)[..|s+t|-1])+(s+t)[|s+t|-1]; SumR((s+t)[..|s+t|-1])+t[|t|-1]; {concatLast(s,t);} SumR(s+t[..|t|-1])+t[|t|-1]; {SumByPartsR(s,t[..|t|-1]);} SumR(s)+SumR(t[..|t|-1])+t[|t|-1]; SumR(s)+SumR(t); } } } lemma {:induction s,t} SumByPartsL(s:seq<int>,t:seq<int>) decreases s,t ensures SumL(s+t) == SumL(s)+SumL(t) //Prove this { if(t==[]){ assert s+t==s; } else if(s==[]){ assert s+t==t; } else{ calc == { SumL(s+t); (s+t)[0] + SumL((s+t)[1..]); s[0] + SumL((s+t)[1..]); {concatFirst(s,t);} s[0] + SumL(s[1..] + t); {SumByPartsL(s[1..], t);} s[0] + SumL(s[1..]) + SumL(t); } } } lemma {:induction s,i,j} equalSumR(s:seq<int>,i:int,j:int) decreases j-i requires 0<=i<=j<=|s| ensures SumR(s[i..j])==SumL(s[i..j]) //Prove this { if(s==[]){ assert SumR(s) == SumL(s); }else{ if(i==j){ assert SumR(s[i..j]) == SumL(s[i..j]); } else{ calc == { SumR(s[i..j]); { assert s[i..j] == s[i..j-1] + [s[j-1]]; assert SumR(s[i..j]) == SumR(s[i..j-1]) + s[j-1]; } SumR(s[i..j-1]) + s[j-1]; {equalSumR(s, i, j-1);} SumL(s[i..j-1]) + s[j-1]; {assert s[j-1] == SumL([s[j-1]]);} SumL(s[i..j-1]) + SumL([s[j-1]]); {SumByPartsL(s[i..j-1], [s[j-1]]);} SumL(s[i..j-1] + [s[j-1]]); { assert s[i..j] == s[i..j-1] + [s[j-1]]; } SumL(s[i..j]); /*SumR(s[i..j-1])+SumR(s[j..j]); SumR(s[i..j-1]) + s[j..j]; SumL(s);*/ } } } } lemma equalSumsV() ensures forall v:array<int>,i,j | 0<=i<=j<=v.Length :: SumR(v[i..j])==SumL(v[i..j]) //proving the forall { forall v:array<int>,i,j | 0<=i<=j<=v.Length ensures SumR(v[i..j])==SumL(v[i..j]) {equalSumR(v[..],i,j);} } function SumV(v:array<int>,c:int,f:int):int requires 0<=c<=f<=v.Length reads v {SumR(v[c..f])} lemma ArrayFacts<T>() ensures forall v : array<T> :: v[..v.Length] == v[..]; ensures forall v : array<T> :: v[0..] == v[..]; ensures forall v : array<T> :: v[0..v.Length] == v[..]; ensures forall v : array<T> ::|v[0..v.Length]|==v.Length; ensures forall v : array<T> | v.Length>=1 ::|v[1..v.Length]|==v.Length-1; ensures forall v : array<T> ::forall k : nat | k < v.Length :: v[..k+1][..k] == v[..k] // ensures forall v:array<int>,i,j | 0<=i<=j<=v.Length :: SumR(v[i..j])==SumL(v[i..j]) {equalSumsV();} method sumElems(v:array<int>) returns (sum:int) //ensures sum==SumL(v[0..v.Length]) ensures sum==SumR(v[..]) //ensures sum==SumV(v,0,v.Length) {ArrayFacts<int>(); sum:=0; var i:int; i:=0; while (i<v.Length) decreases v.Length - i//write invariant 0<=i<=v.Length && sum == SumR(v[..i])//write { sum:=sum+v[i]; i:=i+1; } } method sumElemsB(v:array<int>) returns (sum:int) //ensures sum==SumL(v[0..v.Length]) ensures sum==SumR(v[0..v.Length]) { ArrayFacts<int>(); sum:=0; var i:int; i:=v.Length; equalSumsV(); while(i>0) decreases i//write invariant 0<=i<=v.Length invariant sum == SumL(v[i..]) == SumR(v[i..]) { sum:=sum+v[i-1]; i:=i-1; } }
Dafny-Exercises_tmp_tmpjm75muf__Session5Exercises_ExerciseSumElems.dfy
096
096
Dafny program: 096
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} predicate isEven(i:int) requires i>=0 {i%2==0} function CountEven(s:seq<int>):int requires positive(s) {if s==[] then 0 else (if (s[|s|-1]%2==0) then 1 else 0)+CountEven(s[..|s|-1]) } lemma ArrayFacts<T>() ensures forall v : array<T> :: v[..v.Length] == v[..]; ensures forall v : array<T> :: v[0..] == v[..]; ensures forall v : array<T> :: v[0..v.Length] == v[..]; ensures forall v : array<T> ::|v[0..v.Length]|==v.Length; ensures forall v : array<T> | v.Length>=1 ::|v[1..v.Length]|==v.Length-1; ensures forall v : array<T> ::forall k : nat | k < v.Length :: v[..k+1][..k] == v[..k] {} method mcountEven(v:array<int>) returns (n:int) requires positive(v[..]) ensures n==CountEven(v[..]) { ArrayFacts<int>(); n:=0; var i:int; i:=0; while (i<v.Length) { if (v[i]%2==0) {n:=n+1;} i:=i+1; } }
predicate positive(s:seq<int>) {forall u::0<=u<|s| ==> s[u]>=0} predicate isEven(i:int) requires i>=0 {i%2==0} function CountEven(s:seq<int>):int decreases s requires positive(s) {if s==[] then 0 else (if (s[|s|-1]%2==0) then 1 else 0)+CountEven(s[..|s|-1]) } lemma ArrayFacts<T>() ensures forall v : array<T> :: v[..v.Length] == v[..]; ensures forall v : array<T> :: v[0..] == v[..]; ensures forall v : array<T> :: v[0..v.Length] == v[..]; ensures forall v : array<T> ::|v[0..v.Length]|==v.Length; ensures forall v : array<T> | v.Length>=1 ::|v[1..v.Length]|==v.Length-1; ensures forall v : array<T> ::forall k : nat | k < v.Length :: v[..k+1][..k] == v[..k] {} method mcountEven(v:array<int>) returns (n:int) requires positive(v[..]) ensures n==CountEven(v[..]) { ArrayFacts<int>(); n:=0; var i:int; i:=0; while (i<v.Length) decreases v.Length - i//write invariant 0<=i<=v.Length//write invariant n==CountEven(v[..i]) { if (v[i]%2==0) {n:=n+1;} i:=i+1; } }
Dafny-Exercises_tmp_tmpjm75muf__Session6Exercises_ExerciseCountEven.dfy
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
18