Datasets:
language:
- en
license: mit
annotations_creators:
- machine-generated
size_categories:
- 100K<n<1M
task_categories:
- other
- text-generation
- visual-question-answering
- image-to-image
- reinforcement-learning
task_ids:
- language-modeling
- visual-question-answering
- image-inpainting
pretty_name: CellARC 100k Meta
tags:
- cellular-automata
- arc
- reasoning
cellarc_100k_meta
CellARC 100k Meta is the metadata‑rich variant of the CellARC benchmark introduced in Lzicar, M. (2025). CellARC: Measuring Intelligence with Cellular Automata. It contains the exact same episodes and splits as cellarc_100k, with byte‑identical Parquet files; the JSONL files retain full per‑episode metadata (rule tables, coverage diagnostics, morphology descriptors, sampling parameters, etc.). Each episode exposes five support pairs plus a held‑out query/solution pair.
Data quick facts
- Alphabet size
kin [2, 6]; window sizeWin {3, 5, 7}; radiusrin {1, 2, 3}; stepstin {1, 2, 3} (≈95% havet = 1). - Values (digits) are integers in
0..k-1per episode; across the full dataset the union of symbols is{0,1,2,3,4,5}. - Five training exemplars per episode (
len(train) = 5). - Sample length
L∈ [5, 21] (median 11). Episode total length is12 × L(5 train pairs + query + solution), median 132. - JSON layout:
id,train[].input,train[].output,query,solution, plus a richmetaobject.
Contents
cellarc_100k_meta/
├── data/
│ ├── train.{jsonl,parquet}
│ ├── val.{jsonl,parquet}
│ ├── test_interpolation.{jsonl,parquet}
│ └── test_extrapolation.{jsonl,parquet}
├── subset_ids/
├── data_files.json
├── dataset_stats.json
├── features.json
├── LICENSE
└── CITATION.cff
Parquet assets are byte‑identical to cellarc_100k; the JSONL files retain the enriched payloads.
Additional metadata
Each JSON line adds to the supervision fields with:
meta: alphabet size, radius, steps, window size, train/query spans, family/construction labels, Langton λ & entropy, coverage breakdowns (includingquery_window_coverage_weighted,query_window_coverage_unique,query_window_avg_depth), morphology descriptors, seeds, and more.rule_table: base64‑encoded CA lookup table (also nested undermeta["rule_table"]).id: deterministic fingerprint (alias ofmeta["fingerprint"]).
Split summary
| split | episodes | parquet bytes |
|---|---|---|
| train | 95,317 | 12,378,645 |
| val | 1,000 | 128,117 |
| test_interpolation | 1,000 | 128,271 |
| test_extrapolation | 1,000 | 130,303 |
Parquet sizes are identical to cellarc_100k. JSONL files are larger due to metadata; see artifacts/hf_cellarc/hf-cellarc_100k_meta/data_files.json for exact JSONL byte counts.
Subset splits and ID lists
- Predefined 100‑episode subsets are included for all splits as
data/{train,val,test_interpolation,test_extrapolation}_100.{jsonl,parquet}. - The exact episode selections are recorded under
subset_ids/as{split}_100.txt(one ID per line). These lists allow reproducible sampling and enable efficient evaluation workflows. - Motivation: Smaller, fixed subsets facilitate quick iteration and reduce evaluation costs when using API‑metered large language models or other pay‑per‑call services, while preserving representativeness of the full splits.
Coverage & dynamics
- Coverage fraction (global): mean 0.402, min 0.069, max 0.938.
- Langton’s λ (global): mean 0.565, min 0.016, max 1.000.
- Avg. cell entropy (global): mean 1.110 bits, max 2.585.
- Steps: 1 (95.3%), 2 (4.6%), 3 (0.1%).
- Window size: W=3 (74.1%), W=5 (13.3%), W=7 (12.6%).
- Radii: r=1 (78.7%), r=2 (8.7%), r=3 (12.5%).
- Families (share of episodes): random 25.3%, totalistic 24.8%, outer‑totalistic 18.7%, outer‑inner totalistic 18.7%, threshold 11.9%, linear mod(k) 0.7%.
Details per split in artifacts/hf_cellarc/hf-cellarc_100k_meta/dataset_stats.json.
Loading examples
from datasets import load_dataset
# Parquet (recommended)
parquet_files = {
split: "data/" + f"{split}.parquet"
for split in ("train", "val", "test_interpolation", "test_extrapolation")
}
ds = load_dataset("parquet", data_files=parquet_files)
# JSONL to access metadata columns
jsonl_files = {split: "data/" + f"{split}.jsonl" for split in parquet_files}
meta = load_dataset("json", data_files=jsonl_files)
example = meta["train"][0]
print(example["id"], example["meta"]["lambda"], example["meta"]["query_window_coverage_weighted"]) # metadata fields
When uploaded to the Hub, replace local paths with the dataset ID (e.g. load_dataset("mireklzicar/cellarc_100k_meta", split="train")).
Relationship to cellarc_100k
- Identical Parquet files and split membership.
- JSONL keeps full provenance instead of supervision‑only layout.
Reproduction
See the cellarc_100k README for the exact resample_highcov.py, split_pool.py, and build_hf_dataset.py commands used in this refresh.
Resources
- Leaderboard: https://cellarc.mireklzicar.com
- Dataset repo: https://github.com/mireklzicar/cellarc
- Baselines repo: https://github.com/mireklzicar/cellarc_baselines
- HF dataset: https://huggingface.co/datasets/mireklzicar/cellarc_100k
- HF meta: https://huggingface.co/datasets/mireklzicar/cellarc_100k_meta
License & citation
- License: MIT (repository default).
- Cite the CellARC project when reporting results (
CITATION.cff).