Dataset Viewer
Auto-converted to Parquet
image_id
string
patient_id
int64
patient_age
float64
age_group
string
age_group_numeric
int64
age_group_broad
string
age_group_broad_numeric
int64
patient_sex
int64
exam_eye
int64
diabetic_retinopathy
int64
macular_edema
int64
diabetes
int64
camera
string
optic_disc
int64
vessels
int64
macula
int64
hemorrhage
int64
increased_cup_disc
int64
hypertensive_retinopathy
int64
quality
string
img00005
3
22
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
2
1
1
0
0
0
Adequate
img00006
3
22
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
2
1
1
0
0
0
Adequate
img00007
4
22
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00008
4
22
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00011
6
14
pediatric
0
pediatric
0
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00012
6
14
pediatric
0
pediatric
0
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00013
7
20
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00014
7
20
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00017
9
13
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00018
9
13
pediatric
0
pediatric
0
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00019
10
37
middle_age_1
2
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00020
10
37
middle_age_1
2
young_adult
1
1
2
0
0
1
Canon CR
2
1
2
0
1
0
Adequate
img00021
11
21
young_adult
1
young_adult
1
2
1
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00022
11
21
young_adult
1
young_adult
1
2
2
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00023
12
16
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00024
12
16
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00025
13
24
young_adult
1
young_adult
1
2
1
1
1
1
Canon CR
1
1
2
0
0
0
Adequate
img00026
13
24
young_adult
1
young_adult
1
2
2
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00027
14
20
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00028
14
20
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00031
16
19
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00032
16
19
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00033
17
24
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00034
17
24
young_adult
1
young_adult
1
1
2
0
1
1
Canon CR
2
1
2
0
0
0
Adequate
img00035
18
22
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00036
18
22
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00037
19
20
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00038
19
20
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00039
20
42
middle_age_2
3
middle_age
2
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00040
20
42
middle_age_2
3
middle_age
2
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00041
21
14
pediatric
0
pediatric
0
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00042
21
14
pediatric
0
pediatric
0
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00043
22
21
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00044
22
21
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00045
23
17
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00046
23
17
pediatric
0
pediatric
0
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00049
25
28
young_adult
1
young_adult
1
2
1
1
1
1
Canon CR
1
1
1
0
0
0
Adequate
img00050
25
28
young_adult
1
young_adult
1
2
2
1
1
1
Canon CR
1
1
2
0
0
0
Adequate
img00053
27
24
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00054
28
13
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00055
28
13
pediatric
0
pediatric
0
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00056
29
13
pediatric
0
pediatric
0
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00057
29
13
pediatric
0
pediatric
0
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00058
30
19
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00059
30
19
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00060
31
27
young_adult
1
young_adult
1
1
1
1
1
1
Canon CR
1
1
1
0
0
0
Adequate
img00061
31
27
young_adult
1
young_adult
1
1
2
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00062
32
18
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00063
32
18
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00064
33
20
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00065
33
20
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00066
34
21
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00067
34
21
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00072
37
20
young_adult
1
young_adult
1
1
1
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00073
37
20
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00076
39
20
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00077
39
20
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00078
40
21
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
2
1
1
0
1
0
Adequate
img00079
40
21
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
2
1
1
0
1
0
Adequate
img00080
41
25
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00081
41
25
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00082
42
23
young_adult
1
young_adult
1
2
1
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00083
42
23
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00084
43
25
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00085
43
25
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
2
0
0
0
Adequate
img00086
44
21
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00087
44
21
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00088
45
19
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00089
45
19
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00090
46
16
pediatric
0
pediatric
0
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00091
46
16
pediatric
0
pediatric
0
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00092
47
21
young_adult
1
young_adult
1
1
1
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00093
47
21
young_adult
1
young_adult
1
1
2
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00098
50
30
middle_age_1
2
young_adult
1
1
1
1
0
1
Canon CR
1
2
2
0
0
0
Adequate
img00099
50
30
middle_age_1
2
young_adult
1
1
2
1
0
1
Canon CR
1
2
1
0
0
0
Adequate
img00100
51
29
young_adult
1
young_adult
1
2
1
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00101
51
29
young_adult
1
young_adult
1
2
2
1
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00102
52
37
middle_age_1
2
young_adult
1
1
1
1
1
1
Canon CR
1
2
1
0
0
0
Adequate
img00103
52
37
middle_age_1
2
young_adult
1
1
2
1
0
1
Canon CR
1
2
2
0
0
0
Adequate
img00104
53
18
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00105
53
18
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00106
54
21
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00107
54
21
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00108
55
21
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00109
55
21
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00112
57
19
young_adult
1
young_adult
1
1
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00113
57
19
young_adult
1
young_adult
1
1
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00114
58
24
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00115
58
24
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00116
59
26
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
2
1
1
0
0
0
Adequate
img00117
59
26
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
2
1
1
0
0
0
Adequate
img00120
61
23
young_adult
1
young_adult
1
1
1
1
0
1
Canon CR
1
2
1
0
0
0
Adequate
img00121
61
23
young_adult
1
young_adult
1
1
2
1
0
1
Canon CR
1
2
1
0
0
0
Adequate
img00122
62
23
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00123
62
23
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00124
63
22
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00125
63
22
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00126
64
28
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00127
64
28
young_adult
1
young_adult
1
2
2
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
img00134
68
19
young_adult
1
young_adult
1
2
1
0
0
1
Canon CR
1
1
1
0
0
0
Adequate
End of preview. Expand in Data Studio
YAML Metadata Warning: The task_categories "image-regression" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Retina Age Analysis Dataset

Dataset Description

This dataset contains 9,857 retinal fundus images from 5,393 patients for age prediction tasks.

Dataset Summary

  • Task: Age prediction from retinal fundus images
  • Images: 9,857 high-quality retinal images
  • Patients: 5,393 unique patients
  • Age Range: 5-97 years
  • Image Format: JPEG
  • Average Image Size: ~1 MB

Supported Tasks

  1. Regression: Predict continuous age (5-97 years)
  2. Classification: Predict age group (5 classes: pediatric, young adult, middle age, senior, elderly)

Data Splits

Split Images Patients Percentage
Train 6,902 3,775 70%
Validation 1,493 809 15%
Test 1,462 809 15%

Note: Split at patient level to prevent data leakage.

Age Distribution

Age Group Age Range Count Percentage
Pediatric 5-17 291 3.0%
Young Adult 18-39 1,447 14.7%
Middle Age 40-59 2,946 29.9%
Senior 60-74 3,484 35.3%
Elderly 75+ 1,689 17.1%

Dataset Structure

retina-age-analysis/
β”œβ”€β”€ images/           # 9,857 retinal fundus images
β”‚   β”œβ”€β”€ img00001.jpg
β”‚   β”œβ”€β”€ img00002.jpg
β”‚   └── ...
β”‚
└── splits/           # Train/val/test split CSV files
    β”œβ”€β”€ train.csv     # 6,902 samples
    β”œβ”€β”€ val.csv       # 1,493 samples
    └── test.csv      # 1,462 samples

Data Fields

Each CSV file contains:

  • image_id: Image filename (without extension)
  • patient_id: Unique patient identifier
  • patient_age: Age in years (target variable for regression)
  • age_group_broad: Age category name
  • age_group_broad_numeric: Age category index (0-4, target for classification)
  • patient_sex: Gender (1=Male, 2=Female)
  • exam_eye: Eye examined (1=Right, 2=Left)
  • diabetic_retinopathy: DR status (0=No, 1=Yes)
  • camera: Camera type used
  • Additional clinical features

Usage Example

from datasets import load_dataset
from PIL import Image
import pandas as pd

# Load dataset
dataset = load_dataset("ramankamran/retina-age-analysis")

# Load splits
train_df = pd.read_csv("hf://datasets/ramankamran/retina-age-analysis/splits/train.csv")
val_df = pd.read_csv("hf://datasets/ramankamran/retina-age-analysis/splits/val.csv")
test_df = pd.read_csv("hf://datasets/ramankamran/retina-age-analysis/splits/test.csv")

# Load an image
from huggingface_hub import hf_hub_download
img_path = hf_hub_download(
    repo_id="ramankamran/retina-age-analysis",
    filename="images/img00001.jpg",
    repo_type="dataset"
)
image = Image.open(img_path)

# Get corresponding label
label = train_df[train_df['image_id'] == 'img00001']['patient_age'].values[0]

PyTorch DataLoader

See the training code in the repository for PyTorch DataLoader implementation with:

  • Data augmentation (rotation, flip, brightness, contrast)
  • ImageNet normalization
  • Batch loading

Baseline Results

Regression (Age Prediction):

  • MAE: 7-10 years (baseline)
  • Target: < 5 years (optimized)

Classification (Age Groups):

  • Accuracy: 70-75% (baseline)
  • Target: 85-90% (with semi-supervised learning)

License

MIT License

Citation

If you use this dataset, please cite:

@dataset{retina_age_analysis,
  author = {Raman Kamran},
  title = {Retina Age Analysis Dataset},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/ramankamran/retina-age-analysis}
}

Dataset Curators

Dataset cleaned and prepared by ramankamran.

Preprocessing

  • Removed images with missing age labels (33.5% of original data)
  • Removed inadequate quality images (8.9%)
  • Verified all image files exist
  • Created stratified train/val/test splits
  • Patient-level splitting to prevent data leakage

Intended Use

  • Medical image analysis research
  • Age prediction from retinal images
  • Transfer learning for ophthalmology tasks
  • Semi-supervised learning experiments

Limitations

  • Class imbalance (elderly patients over-represented, pediatric under-represented)
  • Single imaging center data
  • Requires domain knowledge for clinical interpretation

Additional Information

For training code and examples, see: GitHub Repository

Downloads last month
73