Dataset Viewer
Auto-converted to Parquet
SMILES
stringlengths
13
526
Ki
float64
-6.39
2
CC(=N)N1CCC(Oc2ccc3nc(CCC(=O)O)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-3.426511
CC(=N)N1CCC(Oc2ccc3c(c2)nc(C(C)C)n3Cc2ccc3ccc(C(=N)N)cc3c2)CC1
-2.939519
CCC(C)c1nc2cc(OC3CCN(C(C)=N)CC3)ccc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-3.361728
COC(=O)C(C)CN(c1ccc2c(c1)nc(C)n2Cc1ccc2ccc(C(=N)N)cc2c1)C1CCN(C(C)=N)CC1
-3.69897
CCCCc1nc2cc(OC3CCN(C(C)=N)CC3)ccc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-3.30103
COC(=O)CCCN(c1ccc2c(c1)nc(C)n2Cc1ccc2ccc(C(=N)N)cc2c1)C1CCN(C(C)=N)CC1
-3.778151
Cc1ccc(C)c(CNC(=O)[C@@H]2CCCN2C(=O)C(N)C(c2ccccc2)c2ccccc2)c1
-1.60206
CC(=N)N1CCC(N(CC(N)=O)c2ccc3nc(C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-2.690196
Nc1cc[n+](Cc2ccc(OC(CCc3ccccc3)c3ccccc3)cc2)cc1
-2.20412
CC(=N)N1CCC(N(CCCC(=O)O)c2ccc3nc(C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-3.69897
c1ccc(COc2ccc(CCNc3ccncc3)cc2)cc1
-3.897627
CCCCc1nc2ccc(OC3CCN(C(C)=N)CC3)cc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-2.361728
c1ccc(COc2ccc(CNc3ccncc3)cc2)cc1
-3.672098
COC(=O)CCCN(c1ccc2nc(C)n(Cc3ccc4ccc(C(=N)N)cc4c3)c2c1)C1CCN(C(C)=N)CC1
-3.663701
COC(=O)C(C)CN(c1ccc2nc(C)n(Cc3ccc4ccc(C(=N)N)cc4c3)c2c1)C1CCN(C(C)=N)CC1
-2.477121
CC(=N)N1CCC(N(CCCC(=O)O)c2ccc3c(c2)nc(C)n3Cc2ccc3ccc(C(=N)N)cc3c2)CC1
-3.69897
CCCc1nc2cc(OC3CCN(C(C)=N)CC3)ccc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-3.380211
COC(=O)CN(c1ccc2c(c1)nc(C)n2Cc1ccc2ccc(C(=N)N)cc2c1)C1CCN(C(C)=N)CC1
-3.431364
CC(=N)N1CCC(Oc2ccc3nc(CCC(N)=O)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-2.770852
NC(C(=O)N1CCC[C@H]1C(=O)NCc1ccccc1)C(c1ccccc1)c1ccccc1
-2.041393
CCC(C)c1nc2ccc(OC3CCN(C(C)=N)CC3)cc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-2.20412
CC(=N)N1CCC(Oc2ccc3c(c2)nc(C)n3Cc2ccc3ccc(C(=N)N)cc3c2)CC1
-3.591065
CC(=N)N1CCC(Oc2ccc3c(c2)nc(C(C)(C)C)n3Cc2ccc3ccc(C(=N)N)cc3c2)CC1
-2.977724
CCOC(=O)CCC(=O)N(c1ccc2nc(C)n(Cc3ccc4ccc(C(=N)N)cc4c3)c2c1)C1CCN(C(C)=N)CC1
-3.662758
CC(=N)N1CCC(Oc2ccc3nc(C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-2.361728
CC(=N)N1CCC(N(CC(C)C(=O)O)c2ccc3c(c2)nc(C)n3Cc2ccc3ccc(C(=N)N)cc3c2)CC1
-3.69897
CCOC(=O)CCC(=O)N(c1ccc2c(c1)nc(C)n2Cc1ccc2ccc(C(=N)N)cc2c1)C1CCN(C(C)=N)CC1
-3.69897
CN[C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)N[C@H](C=O)CCCN=C(N)N
-1.130334
NC(C(=O)N1CCC[C@H]1C(=O)NCC1CCCCC1)C(c1ccccc1)c1ccccc1
-1.845098
CC(=N)N1CCC(Oc2ccc3nc(C(C)C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-1.50515
COC(=O)CN(c1ccc2nc(C)n(Cc3ccc4ccc(C(=N)N)cc4c3)c2c1)C1CCN(C(C)=N)CC1
-1.991226
Nc1cc[n+](Cc2ccc(OCc3ccccc3)cc2)cc1
-2.845098
Nc1cc[n+](Cc2ccc(OC(c3ccccc3)c3ccccc3)cc2)cc1
-1.763428
CC(=N)N1CCC(N(CC(C)C(=O)O)c2ccc3nc(C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-2.812913
CCc1nc2ccc(OC3CCN(C(C)=N)CC3)cc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-1.778151
CCCc1nc2ccc(OC3CCN(C(C)=N)CC3)cc2n1Cc1ccc2ccc(C(=N)N)cc2c1
-1.845098
CC(=N)N1CCC(N(C(=O)CCC(=O)O)c2ccc3nc(C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-3.69897
CC(=N)N1CCC(Oc2ccc3ncn(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-2.908485
CC(=N)N1CCC(Oc2ccc3nc(C(C)(C)C)n(Cc4ccc5ccc(C(=N)N)cc5c4)c3c2)CC1
-1.681241
c1ccc(C(Oc2ccc(CNc3ccncc3)cc2)c2ccccc2)cc1
-3.113943
C[C@H]1CNc2cc(S(=O)(=O)N[C@H](CCCNC(=N)N)C(=O)N3CCCCC3C(=O)O)ccc2C1
-1.278754
CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cnccn1)B(O)O
-4.113943
N=C(N)c1ccc(C[C@@H](NC(=O)CNS(=O)(=O)c2ccc3ccccc3c2)C(=O)N2CCCCC2)cc1
-0.787106
O=S(=O)(Nc1cccc(OCCNc2ccncc2)c1)c1ccccc1
-2.484774
CC(=O)NCC(=O)NC(CCCN=C(N)N)B(O)O
-1.414973
CC(C)(C)OC(=O)N[C@H](Cc1ccccc1)C(=O)NCC(=O)NC(CCCN=C(N)N)B(O)O
0.39794
CC(=O)N1CCC[C@H]1C(=O)NC(CCCN=C(N)N)B(O)O
-0.518514
CC(=O)N[C@H](Cc1ccccc1)C(=O)NCC(=O)NC(CCCN=C(N)N)B(O)O
-0.633468
COc1ccc(C(=O)OC[C@H](CCCN=C(N)N)NC(=O)[C@@H]2CCCN2C(=O)[C@@H](Cc2ccccc2)NC(=O)OC(C)(C)C)cc1
-4.146128
CC(=O)N[C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)B(O)O
1.38934
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccc(Cl)s2)c1
-0.963788
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2cccc(C)c2)c1
-0.778151
N=C(N)c1ccc(CNC(=O)CNC(=O)[C@@H](CO)NS(=O)(=O)CCc2ccccc2)cc1
-4.518514
COc1ccccc1S(=O)(=O)Oc1cc(C)cc(OCCC/C=N/N=C(N)N)c1
-3.113943
Cc1cc(OCC2(/C=N/N=C(N)N)CC2)cc(OS(=O)(=O)c2ccccc2C#N)c1
-1.60206
COC(=O)OC[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)NCC(=O)NCc1ccc(C(=N)N)cc1
-3.477121
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2cccc3cccnc23)c1
-0.672098
Cc1cc(OCCCCN=C(N)N)cc(OS(=O)(=O)c2ccccc2Cl)c1
-1.113943
N=C(N)c1ccc(CNC(=O)CNC(=O)[C@@H](CO)NS(=O)(=O)c2ccc3ccccc3c2)cc1
-4.041393
N=C(N)c1ccc(CNC(=O)CNC(=O)[C@@H](CO)NS(=O)(=O)CC2CCCCC2)cc1
-4
N=C(N)c1ccc(CNC(=O)[C@H]2CCCN2C(=O)[C@@H](CO)NS(=O)(=O)Cc2ccccc2)cc1
-1.079181
C[C@H](NC(=O)[C@@H](CO)NS(=O)(=O)Cc1ccccc1)C(=O)NCc1ccc(C(=N)N)cc1
-2.021189
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2cccnc2)c1
-1.556303
N=C(N)c1ccc(CNC(=O)CNS(=O)(=O)c2ccc3ccccc3c2)cc1
-4.20412
CC(C)c1cc(S(=O)(=O)N[C@H](CO)C(=O)NCC(=O)NCc2ccc(C(=N)N)cc2)cc(C(C)C)c1C(C)C
-4.176091
CC(C)COC(=O)OC[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)NCC(=O)NCc1ccc(C(=N)N)cc1
-3.60206
COc1ccccc1S(=O)(=O)Oc1cc(C)cc(OCC/C=N/N=C(N)N)c1
-1.041393
CC(C)(C)OC(=O)N[C@@H](CO)C(=O)NCC(=O)NCc1ccc(C(=N)N)cc1
-4.838849
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2S(C)(=O)=O)c1
-1.30103
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2C(F)(F)F)c1
-0.643453
CC(C)COC(=O)OC[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N[C@@H](C)C(=O)NCc1ccc(C(=N)N)cc1
-1.69897
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2cccc3ccccc23)c1
-1.643453
COc1cc(CCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2Cl)c1
-2.995635
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2C#N)c1
-0.959041
N=C(N)c1ccc(CNC(=O)CNC(=O)[C@@H](CO)NS(=O)(=O)/C=C/c2ccccc2)cc1
-4.176091
Cc1cc(OCC/C=N/N=C(N)N)cc(OCc2ccccc2C(F)(F)F)c1
-2.623249
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2cccc(Cl)c2Cl)c1
-0.973128
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2Cl)c1
-0.919078
N=C(N)c1ccc(CNC(=O)CNC(=O)[C@@H](CO)NS(=O)(=O)Cc2ccccc2)cc1
-4.113943
Cc1cc(OCC/C=N/N=C(N)N)cc(OS(=O)(=O)c2ccccc2OC(F)(F)F)c1
-1.041393
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(CNC=O)nc3Cc3ccccc3)O[C@@H]1C2
-1.518514
CC1(C)CNc2c(cc(CO)cc2S(=O)(=O)N[C@@H](Cc2nc3ccccc3s2)C(=O)N2CCC(CCF)CC2)C1
-1.80618
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(CS(C)(=O)=O)nc3Cc3ccccc3)O[C@@H]1C2
-1.041393
Nc1ncc2c(n1)CCC(CNC(=O)[C@@H]1CCCN1C(=O)[C@H](N)C(c1ccccc1)c1ccccc1)C2
-4.11059
CC1(C)CNc2c(cc(CCO)cc2S(=O)(=O)N[C@@H](Cc2nc3ccccc3s2)C(=O)N2CCC(CCF)CC2)C1
-1.591065
N=C(N)N1CCCC(C[C@H](NC(=O)CN2C(=O)CN(CCCc3ccccc3)C(=O)[C@H]2Cc2ccc(Cl)c(Cl)c2)C(=O)c2nccs2)C1
-0.90309
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(CO)nc3Cc3ccccc3)O[C@@H]1C2
-1.924279
Cc1cc(OCCN(C)c2ccncc2)cc(OS(=O)(=O)c2ccccc2Cl)c1
-1.243038
N[C@H](Cc1ccc(Cl)c(Cl)c1)C(=O)N1CCC[C@H]1C(=O)NCC1CCc2n[nH]cc2C1
-2.838849
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(-c4cccc([N+](=O)[O-])c4)nc3Cc3ccccc3)O[C@@H]1C2
-1.929419
CC1(C)CNc2c(cc(CCC(=O)N3CCN(CC(=O)N4CCOCC4)CC3)cc2S(=O)(=O)N[C@@H](Cc2nc3ccccc3s2)C(=O)N2CCC(CCF)CC2)C1
-1.755875
N=C(N)N1CCCC(C[C@H](NC(=O)CN2C(=O)CN(CCCc3ccccc3)C(=O)[C@H]2Cc2cccc(Cl)c2)C(=O)c2nccs2)C1
-1.30103
COC(=O)Cc1nc(Cc2ccccc2)n(CC(=O)N[C@@H](CCCCN)B2O[C@@H]3C[C@@H]4C[C@@H](C4(C)C)[C@]3(C)O2)n1
-1.929419
O=C(O)CN[C@H](CC1CCCCC1)C(=O)N1CCC[C@H]1C(=O)NCC1CCc2n[nH]cc2C1
-2.447158
N=C(N)N1CCCC(C[C@H](NC(=O)CN2C(=O)CN(CCCc3ccccc3)C(=O)[C@H]2Cc2ccccc2)C(=O)N2CCCC2)C1
-2.113943
CNC(=O)OCc1cc2c(c(S(=O)(=O)N[C@@H](Cc3nc4ccccc4s3)C(=O)N3CCC(CCF)CC3)c1)NCC(C)(C)C2
-1.886491
N[C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCCNc1ccncc1
-3.612784
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(-c4ccccc4)nc3Cc3ccccc3)O[C@@H]1C2
-2.238046
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(CNS(=O)(=O)C(F)(F)F)nc3Cc3ccccc3)O[C@@H]1C2
-2.322219
CC1(C)[C@H]2C[C@@H]1[C@]1(C)OB([C@H](CCCCN)NC(=O)Cn3nc(CC#N)nc3Cc3cccc([N+](=O)[O-])c3)O[C@@H]1C2
-0.255273
End of preview. Expand in Data Studio

MoleculeACE ChEMBL204 Ki

ChEMBL204 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the Prothrombin target.

Characteristic Description
Tasks 1
Task type regression
Total samples 2754
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
73